Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm

被引:0
|
作者
Hossam Magdy Balaha
Asmaa El-Sayed Hassan
机构
[1] Mansoura University,Computer Engineering and Systems Department, Faculty of Engineering
[2] Mansoura University,Mathematics and Engineering Physics Department, Faculty of Engineering
来源
关键词
Skin cancer; Melanoma cancer; Non-melanoma cancer; Convolution neural network (CNN); Deep learning (DL); Meta-heuristic optimization; Segmentation; Sparrow search algorithm (SpaSA);
D O I
暂无
中图分类号
学科分类号
摘要
Skin cancer affects the lives of millions of people every year, as it is considered the most popular form of cancer. In the USA alone, approximately three and a half million people are diagnosed with skin cancer annually. The survival rate diminishes steeply as the skin cancer progresses. Despite this, it is an expensive and difficult procedure to discover this cancer type in the early stages. In this study, a threshold-based automatic approach for skin cancer detection, classification, and segmentation utilizing a meta-heuristic optimizer named sparrow search algorithm (SpaSA) is proposed. Five U-Net models (i.e., U-Net, U-Net++, Attention U-Net, V-net, and Swin U-Net) with different configurations are utilized to perform the segmentation process. Besides this, the meta-heuristic SpaSA optimizer is used to perform the optimization of the hyperparameters using eight pre-trained CNN models (i.e., VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small, NASNetMobile, and NASNetLarge). The dataset is gathered from five public sources in which two types of datasets are generated (i.e., 2-classes and 10-classes). For the segmentation, concerning the “skin cancer segmentation and classification” dataset, the best reported scores by U-Net++ with DenseNet201 as a backbone architecture are 0.104, 94.16%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.16\%$$\end{document}, 91.39%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$91.39\%$$\end{document}, 99.03%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.03\%$$\end{document}, 96.08%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.08\%$$\end{document}, 96.41%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.41\%$$\end{document}, 77.19%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$77.19\%$$\end{document}, 75.47%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$75.47\%$$\end{document} in terms of loss, accuracy, F1-score, AUC, IoU, dice, hinge, and squared hinge, respectively, while for the “PH2” dataset, the best reported scores by the Attention U-Net with DenseNet201 as backbone architecture are 0.137, 94.75%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.75\%$$\end{document}, 92.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.65\%$$\end{document}, 92.56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.56\%$$\end{document}, 92.74%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.74\%$$\end{document}, 96.20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.20\%$$\end{document}, 86.30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$86.30\%$$\end{document}, 92.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.65\%$$\end{document}, 69.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$69.28\%$$\end{document}, and 68.04%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$68.04\%$$\end{document} in terms of loss, accuracy, F1-score, precision, sensitivity, specificity, IoU, dice, hinge, and squared hinge, respectively. For the “ISIC 2019 and 2020 Melanoma” dataset, the best reported overall accuracy from the applied CNN experiments is 98.27%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.27\%$$\end{document} by the MobileNet pre-trained model. Similarly, for the “Melanoma Classification (HAM10K)” dataset, the best reported overall accuracy from the applied CNN experiments is 98.83%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.83\%$$\end{document} by the MobileNet pre-trained model. For the “skin diseases image” dataset, the best reported overall accuracy from the applied CNN experiments is 85.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.87\%$$\end{document} by the MobileNetV2 pre-trained model. After computing the results, the suggested approach is compared with 13 related studies.
引用
收藏
页码:815 / 853
页数:38
相关论文
共 50 条
  • [31] Sparrow Search Algorithm Based on Adaptive Weighting and Fusion of Inverse and Local Learning
    Chen, Yehua
    Xi, Junfu
    Liu, Xia
    Gao, Huan
    International Journal of Network Security, 2023, 25 (03) : 483 - 494
  • [32] Sparrow Search Optimization with Transfer Learning-Based Crowd Density Classification
    Yamin, Mohammad
    Almutairi, Mishaal Mofleh
    Badghish, Saeed
    Bajaba, Saleh
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 4965 - 4981
  • [33] DEEP LEARNING BASED SKIN LESIONS DIAGNOSIS
    Gavrilov, D. A.
    Shchelkunov, N. N.
    Melerzanov, A., V
    INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2019, 42-2 (W12): : 81 - 85
  • [34] Deep Learning and Transfer Learning for Skin Cancer Segmentation and Classification
    Li, Lin
    Seo, Wonseok
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [35] Skin Cancer Classification using Deep Learning and Transfer Learning
    Hosny, Khalid M.
    Kassem, Mohamed A.
    Foaud, Mohamed M.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 90 - 93
  • [36] Chaotic Sparrow Search Algorithm with Deep Learning for Event Detection and Classification in Social Media Environment
    Ramya, R.
    Kannan, S.
    Tehnicki Vjesnik, 32 (01): : 142 - 148
  • [37] A deep extreme learning machine approach optimized by sparrow search algorithm for forecasting of traffic flow
    Naheliya, Bharti
    Kumar, Kranti
    Redhu, Poonam
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [38] Software defect prediction ensemble learning algorithm based on adaptive variable sparrow search algorithm
    Tang, Yu
    Dai, Qi
    Yang, Mengyuan
    Du, Tony
    Chen, Lifang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (06) : 1967 - 1987
  • [39] Software defect prediction ensemble learning algorithm based on adaptive variable sparrow search algorithm
    Yu Tang
    Qi Dai
    Mengyuan Yang
    Tony Du
    Lifang Chen
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1967 - 1987
  • [40] Chaotic Sparrow Search Algorithm with Deep Learning for Event Detection and Classification in Social Media Environment
    Ramya, R.
    Kannan, S.
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2025, 32 (01): : 142 - 148