Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm

被引:0
|
作者
Hossam Magdy Balaha
Asmaa El-Sayed Hassan
机构
[1] Mansoura University,Computer Engineering and Systems Department, Faculty of Engineering
[2] Mansoura University,Mathematics and Engineering Physics Department, Faculty of Engineering
来源
关键词
Skin cancer; Melanoma cancer; Non-melanoma cancer; Convolution neural network (CNN); Deep learning (DL); Meta-heuristic optimization; Segmentation; Sparrow search algorithm (SpaSA);
D O I
暂无
中图分类号
学科分类号
摘要
Skin cancer affects the lives of millions of people every year, as it is considered the most popular form of cancer. In the USA alone, approximately three and a half million people are diagnosed with skin cancer annually. The survival rate diminishes steeply as the skin cancer progresses. Despite this, it is an expensive and difficult procedure to discover this cancer type in the early stages. In this study, a threshold-based automatic approach for skin cancer detection, classification, and segmentation utilizing a meta-heuristic optimizer named sparrow search algorithm (SpaSA) is proposed. Five U-Net models (i.e., U-Net, U-Net++, Attention U-Net, V-net, and Swin U-Net) with different configurations are utilized to perform the segmentation process. Besides this, the meta-heuristic SpaSA optimizer is used to perform the optimization of the hyperparameters using eight pre-trained CNN models (i.e., VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small, NASNetMobile, and NASNetLarge). The dataset is gathered from five public sources in which two types of datasets are generated (i.e., 2-classes and 10-classes). For the segmentation, concerning the “skin cancer segmentation and classification” dataset, the best reported scores by U-Net++ with DenseNet201 as a backbone architecture are 0.104, 94.16%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.16\%$$\end{document}, 91.39%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$91.39\%$$\end{document}, 99.03%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.03\%$$\end{document}, 96.08%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.08\%$$\end{document}, 96.41%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.41\%$$\end{document}, 77.19%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$77.19\%$$\end{document}, 75.47%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$75.47\%$$\end{document} in terms of loss, accuracy, F1-score, AUC, IoU, dice, hinge, and squared hinge, respectively, while for the “PH2” dataset, the best reported scores by the Attention U-Net with DenseNet201 as backbone architecture are 0.137, 94.75%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.75\%$$\end{document}, 92.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.65\%$$\end{document}, 92.56%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.56\%$$\end{document}, 92.74%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.74\%$$\end{document}, 96.20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.20\%$$\end{document}, 86.30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$86.30\%$$\end{document}, 92.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.65\%$$\end{document}, 69.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$69.28\%$$\end{document}, and 68.04%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$68.04\%$$\end{document} in terms of loss, accuracy, F1-score, precision, sensitivity, specificity, IoU, dice, hinge, and squared hinge, respectively. For the “ISIC 2019 and 2020 Melanoma” dataset, the best reported overall accuracy from the applied CNN experiments is 98.27%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.27\%$$\end{document} by the MobileNet pre-trained model. Similarly, for the “Melanoma Classification (HAM10K)” dataset, the best reported overall accuracy from the applied CNN experiments is 98.83%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.83\%$$\end{document} by the MobileNet pre-trained model. For the “skin diseases image” dataset, the best reported overall accuracy from the applied CNN experiments is 85.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.87\%$$\end{document} by the MobileNetV2 pre-trained model. After computing the results, the suggested approach is compared with 13 related studies.
引用
收藏
页码:815 / 853
页数:38
相关论文
共 50 条
  • [1] Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm
    Balaha, Hossam Magdy
    Hassan, Asmaa El-Sayed
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 815 - 853
  • [2] Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm
    Liu, Tingting
    Yuan, Zhi
    Wu, Li
    Badami, Benjamin
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (04) : 1921 - 1935
  • [3] Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model
    Rajathi, G. Ignisha
    Kumar, R. Ramesh
    Ravikumar, D.
    Joel, T.
    Kadry, Seifedine
    Jeong, Chang-Won
    Nam, Yunyoung
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1793 - 1806
  • [4] Chaotic Sparrow Search Algorithm with Deep Transfer Learning Enabled Breast Cancer Classification on Histopathological Images
    Shankar, K.
    Dutta, Ashit Kumar
    Kumar, Sachin
    Joshi, Gyanendra Prasad
    Doo, Ill Chul
    CANCERS, 2022, 14 (11)
  • [5] Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis
    Ma, Guoyuan
    Yue, Xiaofeng
    Zhu, Juan
    Liu, Zeyuan
    Lu, Shibo
    MATHEMATICS, 2023, 11 (22)
  • [6] Deep Learning Based Skin Cancer Diagnosis
    Arik, Alper
    Golcuk, Mesut
    Karsligil, Elif Mine
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [7] A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning
    Fan, Yanyan
    Zhang, Yu
    Guo, Baosu
    Luo, Xiaoyuan
    Peng, Qingjin
    Jin, Zhenlin
    MATHEMATICS, 2022, 10 (16)
  • [8] A Learning Sparrow Search Algorithm
    Ouyang, Chengtian
    Zhu, Donglin
    Wang, Fengqi
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [9] Sparrow Search Algorithm With Stacked Deep Learning Based Medical Image Analysis for Pancreatic Cancer Detection and Classification
    Ramesh, Janjhyam Venkata Naga
    Abirami, T.
    Gopalakrishnan, T.
    Narayanasamy, Kanagaraj
    Ishak, Mohamad Khairi
    Karim, Faten Khalid
    Mostafa, Samih M.
    Allakany, Alaa
    IEEE ACCESS, 2023, 11 : 111927 - 111935
  • [10] Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
    Zhao Guangyuan
    Lei Yu
    The Journal of China Universities of Posts and Telecommunications, 2024, (03) : 15 - 29