Explicit stabilized Runge-Kutta methods

被引:0
|
作者
L. M. Skvortsov
机构
[1] Bauman State Technical University,
来源
Computational Mathematics and Mathematical Physics | 2011年 / 51卷
关键词
Runge-Kutta-Chebyshev methods; stability polynomials; stiff problems for ordinary differential equations; Prothero-Robinson equation;
D O I
暂无
中图分类号
学科分类号
摘要
Explicit Runge-Kutta methods with the stability domains extended along the real axis are examined. For these methods, a simple and efficient procedure for calculating the stability polynomials is proposed. Three techniques for constructing methods with given stability polynomials are considered. Methods of the second and third orders are constructed, and their accuracy as applied to solving the Prothero-Robinson equation is examined. A comparison of the above methods on some test problems is performed.
引用
收藏
页码:1153 / 1166
页数:13
相关论文
共 50 条
  • [31] On explicit two-derivative Runge-Kutta methods
    Chan, Robert P. K.
    Tsai, Angela Y. J.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 171 - 194
  • [32] BLOCK EMBEDDED EXPLICIT RUNGE-KUTTA METHODS.
    Cash, J.R.
    Computers & mathematics with applications, 1985, 11 (04): : 395 - 409
  • [33] Stabilized starting algorithms for collocation Runge-Kutta methods
    González-Pinto, S
    Montijano, JI
    Pérez-Rodríguez, SP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 411 - 428
  • [34] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [35] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &
  • [36] EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS
    Bresten, Christopher
    Gottlieb, Sigal
    Grant, Zachary
    Higgs, Daniel
    Ketcheson, David I.
    Nemeth, Adrian
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 747 - 769
  • [37] Highly stable implicit-explicit Runge-Kutta methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    APPLIED NUMERICAL MATHEMATICS, 2017, 113 : 71 - 92
  • [38] Global error estimation with adaptive explicit Runge-Kutta methods
    Calvo, M
    Higham, DJ
    Montijano, JI
    Randez, L
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (01) : 47 - 63
  • [39] Explicit exponential Runge-Kutta methods for semilinear parabolic problems
    Hochbruck, M
    Ostermann, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1069 - 1090
  • [40] SOME EXPLICIT RUNGE-KUTTA METHODS OF HIGH-ORDER
    COOPER, GJ
    VERNER, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (03) : 389 - &