Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox

被引:0
|
作者
Benjamin Yadin
Matteo Fadel
Manuel Gessner
机构
[1] University of Nottingham,School of Mathematical Sciences and Centre for the Mathematics and Theoretical Physics of Quantum Non
[2] University of Oxford,Equilibrium Systems
[3] University of Basel,Wolfson College
[4] Sorbonne Université,Department of Physics
[5] Collège de France,Laboratoire Kastler Brossel, ENS
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle. This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering. Quantum information recognises steering as an essential resource for a number of tasks but, contrary to entanglement, its role for metrology has so far remained unclear. Here, we formulate the EPR paradox in the framework of quantum metrology, showing that it enables the precise estimation of a local phase shift and of its generating observable. Employing a stricter formulation of quantum complementarity, we derive a criterion based on the quantum Fisher information that detects steering in a larger class of states than well-known uncertainty-based criteria. Our result identifies useful steering for quantum-enhanced precision measurements and allows one to uncover steering of non-Gaussian states in state-of-the-art experiments.
引用
收藏
相关论文
共 50 条
  • [21] NEW LOOPHOLE FOR THE EINSTEIN-PODOLSKY-ROSEN PARADOX
    FELDMANN, M
    FOUNDATIONS OF PHYSICS LETTERS, 1995, 8 (01) : 41 - 53
  • [22] EINSTEIN-PODOLSKY-ROSEN PARADOX AND BELL INEQUALITIES
    DEBAERE, W
    ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, 1986, 68 : 245 - 336
  • [23] A NEW APPROACH TO THE EINSTEIN-PODOLSKY-ROSEN PARADOX
    KAUFHERR, T
    FOUNDATIONS OF PHYSICS, 1985, 15 (10) : 1043 - 1051
  • [24] EINSTEIN-PODOLSKY-ROSEN PARADOX - CALCULATION WITH PROPAGATORS
    PAYEN, R
    VIGOUREUX, JM
    LETTERE AL NUOVO CIMENTO, 1977, 20 (08): : 263 - 266
  • [25] Antiparticle in the light of Einstein-Podolsky-Rosen paradox and Klein paradox
    Ni, GJ
    Guan, H
    Zhou, WM
    Yan, J
    CHINESE PHYSICS LETTERS, 2000, 17 (06) : 393 - 395
  • [26] THE EINSTEIN-PODOLSKY-ROSEN PARADOX IN THE BRAIN - THE TRANSFERRED POTENTIAL
    GRINBERGZYLBERBAUM, J
    DELAFLOR, M
    ATTIE, L
    GOSWAMI, A
    PHYSICS ESSAYS, 1994, 7 (04) : 422 - 428
  • [27] The Einstein-Podolsky-Rosen paradox and SU(2) relativity
    O'Hara, Paul
    11TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2019, 1239
  • [28] Einstein-Podolsky-Rosen paradox in single pairs of images
    Lantz, Eric
    Denis, Severine
    Moreau, Paul-Antoine
    Devaux, Fabrice
    OPTICS EXPRESS, 2015, 23 (20): : 26472 - 26478
  • [29] Il Paradosso EPRThe Einstein-Podolsky-Rosen Paradox
    Francesco De Martini
    Rendiconti Lincei, 2004, 15 (4):
  • [30] THE EINSTEIN-PODOLSKY-ROSEN PARADOX FOR OBSERVABLES ENERGY TIME
    KLYSHKO, DN
    USPEKHI FIZICHESKIKH NAUK, 1989, 158 (02): : 327 - 341