The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

被引:0
|
作者
Fashun Gao
Minbo Yang
机构
[1] Zhejiang Normal University,Department of Mathematics
来源
Science China Mathematics | 2018年 / 61卷
关键词
Brezis-Nirenberg problem; Choquard equation; Hardy-Littlewood-Sobolev inequality; critical exponent; 35J25; 35J60; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation −Δu=(∫Ω|u(y)|2μ*|x−y|μdy)|u|2μ*−2u+λuinΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \right){\left| u \right|^{2_\mu ^* - 2}}u + \lambda uin\Omega ,$$\end{document}, where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter, N ≥ 3, 2μ*=(2N−μ)/(N−2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_\mu ^* = \left( {2N - \mu } \right)/\left( {N - 2} \right)$$\end{document} is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
引用
收藏
页码:1219 / 1242
页数:23
相关论文
共 50 条
  • [21] THE BREZIS-NIRENBERG TYPE DOUBLE CRITICAL PROBLEM FOR A CLASS OF SCHRODINGER-POISSON EQUATIONS
    Cai, Li
    Zhang, Fubao
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (03): : 2475 - 2488
  • [22] The Brezis-Nirenberg type problem involving the square root of the Laplacian
    Tan, Jinggang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (1-2) : 21 - 41
  • [23] Existence of concentrating solutions of the Hartree type Brezis-Nirenberg problem
    Yang, Minbo
    Ye, Weiwei
    Zhao, Shunneng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 260 - 324
  • [24] The Brezis-Nirenberg problem for fractional elliptic operators
    Chen, Ko-Shin
    Montenegro, Marcos
    Yan, Xiaodong
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (10) : 1491 - 1511
  • [25] THE NUMBER OF POSITIVE SOLUTIONS TO THE BREZIS-NIRENBERG PROBLEM
    Cao, Daomin
    Luo, Peng
    Peng, Shuangjie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1947 - 1985
  • [26] Brezis-Nirenberg problem and coron problem for polyharmonic operators
    Ge, YX
    ELLIPTIC AND PARABOLIC PROBLEMS: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 291 - 297
  • [27] THE BREZIS-NIRENBERG PROBLEM IN 4D
    Pistoia, Angela
    Rocci, Serena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1562 - 1572
  • [28] SINGULAR SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Flores, Isabel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 673 - 682
  • [29] On the Brezis-Nirenberg problem for the (p, q)-Laplacian
    Ho, Ky
    Perera, Kanishka
    Sim, Inbo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1991 - 2005
  • [30] The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four
    Liao, Jia-Feng
    Ke, Xiao-Feng
    Liu, Jiu
    Tang, Chun-Lei
    APPLICABLE ANALYSIS, 2018, 97 (15) : 2720 - 2726