Pointwise multipliers of Musielak–Orlicz spaces and factorization

被引:0
|
作者
Karol Leśnik
Jakub Tomaszewski
机构
[1] Poznań University of Technology,Institute of Mathematics
来源
关键词
Nakano spaces; Musielak–Orlicz spaces; Pointwise multipliers; Factorization; 46E30; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the space of pointwise multipliers between two distinct Musielak–Orlicz spaces is another Musielak–Orlicz space and the function defining it is given by an appropriately generalized Legendre transform. In particular, we obtain characterization of pointwise multipliers between Nakano spaces. We also discuss factorization problem for Musielak–Orlicz spaces and exhibit some differences between Orlicz and Musielak–Orlicz cases.
引用
收藏
页码:489 / 509
页数:20
相关论文
共 50 条
  • [21] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [22] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [23] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227
  • [24] Musielak-Orlicz Campanato spaces and applications
    Liang, Yiyu
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 307 - 322
  • [25] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [26] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [27] SOME CONVOLUTION INEQUALITIES IN MUSIELAK ORLICZ SPACES
    Akgun, Ramazan
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2016, 42 (02): : 279 - 291
  • [28] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [29] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [30] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    ScienceChina(Mathematics), 2019, 62 (08) : 1567 - 1584