Global boundedness of solutions to a two-species chemotaxis system

被引:0
|
作者
Qingshan Zhang
Yuxiang Li
机构
[1] Southeast University,Department of Mathematics
关键词
35B35; 35K55; 92C17; Two-species chemotaxis system; Global existence; Boundedness; Logistic source;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the chemotaxis system of two species which are attracted by the same signal substance ut=Δu-∇·(uχ1(w)∇w)+μ1u(1-u-a1v),x∈Ω,t>0,vt=Δv-∇·(vχ2(w)∇w)+μ2v(1-a2u-v),x∈Ω,t>0,wt=Δw-w+u+v,x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{lll}u_t = \Delta u - \nabla \cdot (u \chi_1(w)\nabla w) + \mu_1 u(1 - u - a_1 v), \qquad x \in \Omega, \, t >0,\\ v_t = \Delta v - \nabla \cdot (v \chi_2(w) \nabla w) + \mu_2 v(1 - a_2u - v),\qquad x \in \Omega, \, t >0,\\ w_t = \Delta w - w + u + v, \qquad \qquad \qquad \qquad \qquad \qquad\,\,\, x \in \Omega,\, t >0 \end{array}\right.$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^n}$$\end{document}. We prove that if the nonnegative initial data (u0,v0)∈(C0(Ω¯))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(u_0, v_0) \in \big(C^0(\bar{\Omega})\big)^2}$$\end{document} and w0∈W1,r(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w_0 \in W^{1, r}(\Omega)}$$\end{document} for some r > n, the system possesses a unique global uniformly bounded solution under some conditions on the chemotaxis sensitivity functions χ1(w), χ2(w) and the logistic growth coefficients μ1, μ2.
引用
收藏
页码:83 / 93
页数:10
相关论文
共 50 条
  • [31] Boundedness in a three-dimensional two-species chemotaxis system with two chemicals
    Pan, Xu
    Wang, Liangchen
    Zhang, Jing
    Wang, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [32] Global solutions to a two-species chemotaxis system with singular sensitivity and logistic source
    Huang, Ting
    Yang, Lu
    Han, Yongjie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [33] Boundedness in a quasilinear two-species chemotaxis system with two chemicals in higher dimensions
    Zhong, Hua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [34] BOUNDEDNESS AND ASYMPTOTIC BEHAVIOR IN A QUASILINEAR TWO-SPECIES CHEMOTAXIS SYSTEM WITH LOOP
    Liu, Chao
    Liu, Bin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) : 1239 - 1270
  • [35] Boundedness in a two-species chemotaxis system with nonlinear sensitivity and signal secretion
    Pan, Xu
    Wang, Liangchen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [36] A NEW RESULT FOR BOUNDEDNESS AND STABILIZATION IN A TWO-SPECIES CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Wang, Liangchen
    Mu, Chunlai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (12): : 4585 - 4601
  • [37] GLOBAL EXISTENCE AND STABILITY IN A TWO-SPECIES CHEMOTAXIS SYSTEM
    Qiu, Huanhuan
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1569 - 1587
  • [38] Global dynamics for a two-species chemotaxis system with loop
    Zhou, Xing
    Ren, Guoqiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [39] Boundedness and Stabilization in a Two-Species and Two-Stimuli Chemotaxis System with Signaling Loop
    Liangchen Wang
    Xiaobing Ye
    Rong Zhang
    Acta Applicandae Mathematicae, 2021, 175
  • [40] Boundedness and Stabilization in a Two-Species and Two-Stimuli Chemotaxis System with Signaling Loop
    Wang, Liangchen
    Ye, Xiaobing
    Zhang, Rong
    ACTA APPLICANDAE MATHEMATICAE, 2021, 175 (01)