Simulated annealing algorithm for the robust spanning tree problem

被引:0
|
作者
Yury Nikulin
机构
[1] Christian-Albrechts-Universität zu Kiel,Institut für Betriebswirtschaftslehre
来源
Journal of Heuristics | 2008年 / 14卷
关键词
Robust spanning tree; Simulated annealing; Uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the robust spanning tree problem with interval data, i.e. the case of classical minimum spanning tree problem when edge weights are not fixed but take their values from some intervals associated with edges. The problem consists of finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from an optimal solution under the worst case realization of interval weights. As it was proven in Kouvelis and Yu (Robust Discrete Optimization and Its Applications, Kluwer Academic, Norwell, 1997), the problem is NP-hard, therefore it is of great interest to tackle it with some metaheuristic approach, namely simulated annealing, in order to calculate an approximate solution for large scale instances efficiently. We describe theoretical aspects and present the results of computational experiments. To the best of our knowledge, this is the first attempt to develop a metaheuristic approach for solving the robust spanning tree problem.
引用
收藏
页码:391 / 402
页数:11
相关论文
共 50 条
  • [21] A genetic algorithm for the Capacitated Minimum Spanning Tree problem
    de Lacerda, Estefane George Macedo
    de Medeiros, Manoel Firmino
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 725 - +
  • [22] A Distributed Parallel Algorithm for the Minimum Spanning Tree Problem
    Mazeev, Artem
    Semenov, Alexander
    Simonov, Alexey
    PARALLEL COMPUTATIONAL TECHNOLOGIES, PCT 2017, 2017, 753 : 101 - 113
  • [23] A memetic algorithm for the optimum communication spanning tree problem
    Fischer, Thomas
    Merz, Peter
    HYBRID METAHEURISTICS, PROCEEDINGS, 2007, 4771 : 170 - 184
  • [24] A new algorithm for the minimum spanning tree verification problem
    Matthew Williamson
    K. Subramani
    Computational Optimization and Applications, 2015, 61 : 189 - 204
  • [25] A memetic algorithm for the biobjective minimum spanning tree problem
    Rocha, Daniel A. M.
    Gouvea Goldbarg, Elizabeth F.
    Goldbarg, Marco Cesar
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2006, 3906 : 222 - 233
  • [26] An exact algorithm for the Maximum Leaf Spanning Tree problem
    Fernau, Henning
    Kneis, Joachim
    Kratsch, Dieter
    Langer, Alexander
    Liedloff, Mathieu
    Raible, Daniel
    Rossmanith, Peter
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (45) : 6290 - 6302
  • [27] An Algorithm for the Minimum Spanning Tree Problem with Uncertain Structures
    Hernandes, F.
    Lourenco, M. H. R. S.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (12) : 3885 - 3889
  • [28] Testing a simulated annealing algorithm in a classification problem
    Luebke, K
    Weihs, C
    STOCHASTIC ALGORITHMS: FOUNDATIONS AND APPLICATIONS, 2003, 2827 : 61 - 70
  • [29] Simulated annealing algorithm for balanced allocation problem
    R. Rajesh
    S. Pugazhendhi
    K. Ganesh
    The International Journal of Advanced Manufacturing Technology, 2012, 61 : 431 - 440
  • [30] A simulated annealing algorithm for dynamic layout problem
    Baykasoglu, A
    Gindy, NNZ
    COMPUTERS & OPERATIONS RESEARCH, 2001, 28 (14) : 1403 - 1426