For an abeloid variety A over a complete algebraically closed field extension K of Qp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Q}_p$$\end{document}, we construct a p-adic Corlette–Simpson correspondence, namely an equivalence between finite-dimensional continuous K-linear representations of the Tate module and a certain subcategory of the Higgs bundles on A. To do so, our central object of study is the category of vector bundles for the v-topology on the diamond associated to A. We prove that any pro-finite-étale v-vector bundle can be built from pro-finite-étale v-line bundles and unipotent v-bundles. To describe the latter, we extend the theory of universal vector extensions to the v-topology and use this to generalise a result of Brion by relating unipotent v-bundles on abeloids to representations of vector groups.
机构:
Chanakya Univ Global Campus, Sch Math & Nat Sci, Haraluru Village 562110, Karnataka, IndiaChanakya Univ Global Campus, Sch Math & Nat Sci, Haraluru Village 562110, Karnataka, India
机构:
Department of Applied Mathematics, Graduate School of Science and Technology Kumamoto University, Kurokami 2-39-1, KumamotoDepartment of Applied Mathematics, Graduate School of Science and Technology Kumamoto University, Kurokami 2-39-1, Kumamoto
Inoue H.
Kamada S.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Applied Mathematics, Graduate School of Science and Technology Kumamoto University, Kurokami 2-39-1, KumamotoDepartment of Applied Mathematics, Graduate School of Science and Technology Kumamoto University, Kurokami 2-39-1, Kumamoto
Kamada S.
Naito K.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Applied Mathematics, Graduate School of Science and Technology Kumamoto University, Kurokami 2-39-1, KumamotoDepartment of Applied Mathematics, Graduate School of Science and Technology Kumamoto University, Kurokami 2-39-1, Kumamoto
机构:
Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Aniello, Paolo
论文数: 引用数:
h-index:
机构:
Mancini, Stefano
Parisi, Vincenzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Camerino, Sch Sci & Technol, Via Madonna delle Carceri 9, I-62032 Camerino, Italy
Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, ItalyUniv Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy