In this study, a static shear energy algorithm is presented for the damage assessment of beam-like structures. According to the energy release principle, the strain energy of a damaged element suddenly changes when structural damage occurs. Therefore, the change in the static shear energy is employed to determine the damage locations in beam-like structures. The static shear energy is derived from the spectral factorization of the elementary stiffness matrix and structural deflection variation. The advantage of using shear energy as opposed to total energy is that only a few deflection data points of the beam structure are required during the process of damage identification. Another advantage of the proposed approach is that damage detection can be performed without establishing a structural finite-element model in advance. The proposed technique is first validated using a numerical example with single, multiple, and adjacent damage scenarios. A channel steel beam and rectangular concrete beam are employed as experimental cases to further verify the proposed approach. The results of the simulation and experiment examples indicate that the proposed algorithm provides a simple and effective method for defect localization in beam-like structures.
机构:
Univ Malaya, Fac Engn, Dept Civil Engn, StrucHMRS Grp, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Engn, Dept Civil Engn, StrucHMRS Grp, Kuala Lumpur 50603, Malaysia
Ravanfar, Seyed Alireza
论文数: 引用数:
h-index:
机构:
Razak, Hashim Abdul
Ismail, Zubaidah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Engn, Dept Civil Engn, StrucHMRS Grp, Kuala Lumpur 50603, Malaysia
Ismail, Zubaidah
Hakim, S. J. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Engn, Dept Civil Engn, StrucHMRS Grp, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Engn, Dept Civil Engn, StrucHMRS Grp, Kuala Lumpur 50603, Malaysia