Compactness of Fractional Type Integral Operators on Spaces of Homogeneous Type

被引:0
|
作者
Kokilashvili V. [1 ]
Meskhi A. [1 ,2 ]
机构
[1] A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, 2, Merab Aleksidze II Lane, Tbilisi
[2] School of Mathematics, Kutaisi International University, 5th Lane, K Building, Kutaisi
关键词
D O I
10.1007/s10958-022-06202-2
中图分类号
学科分类号
摘要
For a space (X, d, μ) of homogeneous type and a fractional type integral operator Kα defined on (X, d, μ) we find a necessary and sufficient condition on the exponent q governing the compactness of Kαfrom Lp(X) to Lq(X), where 1 ≤ p, q < ∞ and μ(X) < ∞. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:368 / 375
页数:7
相关论文
共 50 条
  • [31] BOUNDEDNESS AND COMPACTNESS OF COMMUTATORS FOR BILINEAR FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
    Guo, Q.
    Zhou, J.
    ANALYSIS MATHEMATICA, 2021, 47 (01) : 81 - 103
  • [32] Boundedness and Compactness of Commutators for Bilinear Fractional Integral Operators on Morrey Spaces
    Q. Guo
    J. Zhou
    Analysis Mathematica, 2021, 47 : 81 - 103
  • [33] Compactness of commutators of fractional integral operators on ball Banach function spaces
    Yang, Heng
    Zhou, Jiang
    AIMS MATHEMATICS, 2024, 9 (02): : 3126 - 3149
  • [34] Sharp bounds for multilinear fractional integral operators on Morrey type spaces
    Takeshi Iida
    Enji Sato
    Yoshihiro Sawano
    Hitoshi Tanaka
    Positivity, 2012, 16 : 339 - 358
  • [35] Sharp bounds for multilinear fractional integral operators on Morrey type spaces
    Iida, Takeshi
    Sato, Enji
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    POSITIVITY, 2012, 16 (02) : 339 - 358
  • [36] The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type
    Cruz-Uribe, D.
    Shukla, P.
    STUDIA MATHEMATICA, 2018, 242 (02) : 109 - 139
  • [37] Fractional maximal operators on weighted variable Lebesgue spaces over the spaces of homogeneous type
    Cen, Xi
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
  • [38] Compactness Criteria for Fractional Integral Operators
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    Fractional Calculus and Applied Analysis, 2019, 22 : 1269 - 1283
  • [39] COMPACTNESS CRITERIA FOR FRACTIONAL INTEGRAL OPERATORS
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1269 - 1283
  • [40] Maximal operators on spaces of homogeneous type
    Pradolini, G
    Salinas, O
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 435 - 441