Efficiency limit of transition metal dichalcogenide solar cells

被引:0
|
作者
Koosha Nassiri Nazif
Frederick U. Nitta
Alwin Daus
Krishna C. Saraswat
Eric Pop
机构
[1] Stanford University,Department of Electrical Engineering
[2] Stanford University,Department of Materials Science and Engineering
[3] RWTH Aachen University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Ultrathin transition metal dichalcogenide (TMD) films show great promise as absorber materials in high-specific-power (i.e., high-power-per-weight) solar cells, due to their high optical absorption, desirable band gaps, and self-passivated surfaces. However, the ultimate performance limits of TMD solar cells remain unknown today. Here, we establish the efficiency limits of multilayer (≥5 nm-thick) MoS2, MoSe2, WS2, and WSe2 solar cells under AM 1.5 G illumination as a function of TMD film thickness and material quality. We use an extended version of the detailed balance method which includes Auger and defect-assisted Shockley-Read-Hall recombination mechanisms in addition to radiative losses, calculated from measured optical absorption spectra. We demonstrate that single-junction solar cells with TMD films as thin as 50 nm could in practice achieve up to 25% power conversion efficiency with the currently available material quality, making them an excellent choice for high-specific-power photovoltaics.
引用
收藏
相关论文
共 50 条
  • [21] Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting
    Andoshe, Dinsefa M.
    Jeon, Jong-Myeong
    Kim, Soo Young
    Jang, Ho Won
    ELECTRONIC MATERIALS LETTERS, 2015, 11 (03) : 323 - 335
  • [22] Thin film transition metal dichalcogenide photoelectrodes for solar hydrogen evolution: a review
    Bozheyev, Farabi
    Ellmer, Klaus
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (17) : 9327 - 9347
  • [23] Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting
    Yoo, Jisun
    Cha, Eunhee
    Park, Jeunghee
    Lim, Soo A.
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2020, 23 (02): : 25 - 38
  • [24] Lateral transition-metal dichalcogenide heterostructures for high efficiency thermoelectric devices
    Bharadwaj, Sathwik
    Ramasubramaniam, Ashwin
    Ram-Mohan, L. R.
    NANOSCALE, 2022, 14 (32) : 11750 - 11759
  • [25] Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting
    Dinsefa M. Andoshe
    Jong-Myeong Jeon
    Soo Young Kim
    Ho Won Jang
    Electronic Materials Letters, 2015, 11 : 323 - 335
  • [26] Thermodynamic efficiency limit of excitonic solar cells
    Giebink, Noel C.
    Wiederrecht, Gary P.
    Wasielewski, Michael R.
    Forrest, Stephen R.
    PHYSICAL REVIEW B, 2011, 83 (19)
  • [27] High-Efficiency Non-Toxic 2-Terminal and 4-Terminal Perovskite-Transition Metal Dichalcogenide Tandem Solar Cells
    Jayan, Deepthi K.
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (05)
  • [28] Intrinsic Electric Field and Excellent Photocatalytic Solar-to-Hydrogen Efficiency in 2D Janus Transition Metal Dichalcogenide
    Liu, Xiaoqing
    Kang, Wei
    Zhao, Jinghong
    Wang, Yan
    Wang, Wei
    Wang, Lin
    Fang, Liang
    Chen, Qian
    Zhou, Miao
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (03):
  • [29] Transition Metal Dichalcogenide Nanoantennas Lattice
    Viktoriia E. Babicheva
    MRS Advances, 2019, 4 : 2283 - 2288
  • [30] Back contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiency
    Zeng, Yu
    Shen, Zhan
    Wu, Xu
    Wang, Dong-Xiao
    Wang, Ye-Liang
    Sun, Ya-Li
    Wu, Li
    Zhang, Yi
    JOURNAL OF MATERIOMICS, 2021, 7 (03) : 470 - 477