The use of low-level laser therapy (LLLT) represents a new intervention modality that has been explored to enhance exercise performance. The aim of this study was to evaluate the influence of LLLT (GaAIAs—850 nm) at different doses on VO2max and on exercise performance in rats. Male Wistar rats were divided into three groups: “placebo” rats (P-LLLT, n = 10), rats at a dose of 0.315 J per treatment point of LLLT (8.7 J/cm2-LLLT, n = 10), and rats at a dose of 2.205 J per treatment point of LLLT (61.2 J/cm2-LLLT, n = 10). The LLLT was applied bilaterally at the biceps femoris, gluteus, lateral and medial gastrocnemius, iliopsoas, and adductor longus muscles. One spot in each muscle belly was applied, with a sum of 12 spots in each rat, once a day, for 10 days. All animals performed the maximal exercise test (ET) at a metabolic treadmill for rats, with simultaneous gas analysis. The distance covered was measured during ET, before and after the conclusion of the LLLT protocol. The data were compared by a repeated measures two-way ANOVA followed by the Student-Newman-Keuls post hoc tests (p < .05). The 61.2 J/cm2-LLLT group increased VO2basal (~40 %), VO2max (~24 %), VCO2max (~17 %), and distance covered (~34 %) after LLLT application on the skeletal muscle. No significant results were found comparing before and after conditions for the studied variables considering P-LLLT and 8.7 J/cm2-LLLT groups. The LLLT promoted in a dose-dependent manner an increase in oxygen consumption uptake and a performance increment of male Wistar rats.