Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability

被引:0
|
作者
Congming Li
Yingshu Lü
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, CMA
[2] Shanghai Jiao Tong University,Shanghai
来源
关键词
Maximum principles; Laplacian; Fractional Laplacian; Critical integrability; 35B50; 35D30; 35J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider the critical cases for Laplacian with zero-order term and first-order term. It is well known that for the Laplacian with zero-order term -Δ+c(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +c(x)$$\end{document} in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}, c(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in L^p(B_1)$$\end{document}(B1⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1\subset \textbf{R}^n$$\end{document}), the critical case for the maximum principle is p=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{n}{2}$$\end{document}. We show that the critical condition c(x)∈Ln2(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in {L^{\frac{n}{2}}(B_1)}$$\end{document} is not enough to guarantee the strong maximum principle. For the Laplacian with first-order term -Δ+b→(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +\vec {b}(x)$$\end{document}(b→(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}(x)\in L^p(B_1)$$\end{document}), the critical case is p=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n$$\end{document}. In this case, we establish the maximum principle and strong maximum principle for Laplacian with first-order term. We also extend some of the maximum principles above to the fractional Laplacian. We replace the classical lower semi-continuous condition on solutions for the fractional Laplacian with some integrability condition. Then we establish a series of maximum principles for fractional Laplacian under some integrability condition on the coefficients. These conditions are weaker than the previous regularity conditions. The weakened conditions on the coefficients and the non-locality of the fractional Laplacian bring in some new difficulties. Some new techniques are developed.
引用
收藏
相关论文
共 50 条
  • [41] On the Generalized Fractional Laplacian
    Chenkuan Li
    Fractional Calculus and Applied Analysis, 2021, 24 : 1797 - 1830
  • [42] ON THE GENERALIZED FRACTIONAL LAPLACIAN
    Li, Chenkuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (06) : 1797 - 1830
  • [43] Fractional Laplacian on the torus
    Roncal, Luz
    Stinga, Pablo Raul
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (03)
  • [44] FRACTIONAL LAPLACIAN PYRAMIDS
    Delgado-Gonzalo, Ricard
    Tafti, Pouya Dehghani
    Unser, Michael
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3809 - 3812
  • [45] On the Fractional Dunkl–Laplacian
    Fethi Bouzeffour
    Wissem Jedidi
    Fractional Calculus and Applied Analysis, 2024, 27 : 433 - 457
  • [46] Maximum and anti-maximum principle for the fractional p-Laplacian with indefinite weights
    Asso, Oumarou
    Cuesta, Mabel
    Doumate, Jonas T.
    Leadi, Liamidi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [47] Critical problem for the fractional Laplacian operator with sign changing data
    Boukarabila, Youssouf Oussama
    Nasri, Yasmina
    Senhadji, Asma
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (09) : 2181 - 2197
  • [48] POSITIVE SOLUTIONS OF NONHOMOGENEOUS FRACTIONAL LAPLACIAN PROBLEM WITH CRITICAL EXPONENT
    Shang, Xudong
    Zhang, Jihui
    Yang, Yang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 567 - 584
  • [49] COMBINED EFFECTS OF LOGARITHMIC AND CRITICAL NONLINEARITIES IN FRACTIONAL LAPLACIAN PROBLEMS
    Xiang, Mingqi
    Zhang, Binlin
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2021, 26 (7-8) : 363 - 396
  • [50] Multiple Positive Solutions for a Fractional Laplacian System with Critical Nonlinearities
    Li, Qin
    Yang, Zuodong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1879 - 1905