Hypergeometric Summation Algorithms for High-order Finite Elements

被引:0
|
作者
A. Bećirović
P. Paule
V. Pillwein
A. Riese
C. Schneider
J. Schöberl
机构
[1] J. Kepler University,FWF Start
[2] J. Kepler University,Projekt Y
[3] J. Kepler University,192 ``3D hp Finite Elemente'', Johann Radon Institute for Computational and Applied Mathematics (RICAM)
[4] J. Kepler University Linz,RISC
来源
Computing | 2006年 / 78卷
关键词
65N30; 33F10; 33C45; 65Q05; High-order finite elements; Sobolev spaces; hypergeometric summation;
D O I
暂无
中图分类号
学科分类号
摘要
High-order finite elements are usually defined by means of certain orthogonal polynomials. The performance of iterative solution methods depends on the condition number of the system matrix, which itself depends on the chosen basis functions. The goal is now to design basis functions minimizing the condition number, and which can be computed efficiently. In this paper, we demonstrate the application of recently developed computer algebra algorithms for hypergeometric summation to derive cheap recurrence relations allowing a simple implementation for fast basis function evaluation.
引用
收藏
页码:235 / 249
页数:14
相关论文
共 50 条
  • [21] Efficient implementation of high-order finite elements for Helmholtz problems
    Beriot, Hadrien
    Prinn, Albert
    Gabard, Gwenael
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 106 (03) : 213 - 240
  • [23] High-order finite elements applied to the discrete Boltzmann equation
    Duester, Alexander
    Dernkowicz, Leszek
    Rank, Ernst
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (08) : 1094 - 1121
  • [24] HIGH-ORDER TRANSFORMATION METHODS FOR CURVED FINITE-ELEMENTS
    MCLEOD, R
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (04): : 419 - 428
  • [25] A Numerical Investigation of High-Order Finite Elements for Problems of Elastoplasticity
    Duester, A.
    Niggl, A.
    Nuebel, V.
    Rank, E.
    JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 397 - 404
  • [26] High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics
    Dobrev, Veselin A.
    Ellis, Truman E.
    Kolev, Tzanio V.
    Rieben, Robert N.
    COMPUTERS & FLUIDS, 2013, 83 : 58 - 69
  • [27] Incorporation of contact for high-order finite elements in covariant form
    Konyukhov, Alexander
    Schweizerhof, Karl
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (13-14) : 1213 - 1223
  • [28] High-order cut finite elements for the elastic wave equation
    Simon Sticko
    Gustav Ludvigsson
    Gunilla Kreiss
    Advances in Computational Mathematics, 2020, 46
  • [29] Nonlinear magnetohydrodynamics simulation using high-order finite elements
    Sovinec, CR
    Glasser, AH
    Gianakon, TA
    Barnes, DC
    Nebel, RA
    Kruger, SE
    Schnack, DD
    Plimpton, SJ
    Tarditi, A
    Chu, MS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) : 355 - 386
  • [30] A Numerical Investigation of High-Order Finite Elements for Problems of Elastoplasticity
    A. Düster
    A. Niggl
    V. Nübel
    E. Rank
    Journal of Scientific Computing, 2002, 17 : 397 - 404