Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients

被引:4
|
作者
Jin S. [1 ]
Peng Q. [1 ]
Schellhorn H. [1 ]
机构
[1] Institute of Mathematical Sciences, Claremont Graduate University, 710 N. College Ave., Claremont, 91711, CA
关键词
Multifractional process; Parametric estimation; Pointwise Hölder exponent; Wavelet coefficients;
D O I
10.1007/s11203-016-9145-1
中图分类号
学科分类号
摘要
We propose a wavelet-based approach to construct consistent estimators of the pointwise Hölder exponent of a multifractional Brownian motion, in the case where this underlying process is not directly observed. The relative merits of our estimator are discussed, and we introduce an application to the problem of estimating the functional parameter of a nonlinear model. © 2016, Springer Science+Business Media Dordrecht.
引用
收藏
页码:113 / 140
页数:27
相关论文
共 50 条
  • [1] On the identification of the pointwise Holder exponent of the generalized multifractional Brownian motion
    Ayache, A
    Véhel, JL
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (01) : 119 - 156
  • [2] Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity
    Bianchi, S.
    Pantanella, A.
    Pianese, A.
    QUANTITATIVE FINANCE, 2013, 13 (08) : 1317 - 1330
  • [3] ON THE POINTWISE REGULARITY OF THE MULTIFRACTIONAL BROWNIAN MOTION AND SOME EXTENSIONS
    Esser, C.
    Loosveldt, L.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 110 : 55 - 73
  • [4] Multifractional Brownian motion characterization based on Hurst exponent estimation and statistical learning
    Szarek, Dawid
    Jablonski, Ireneusz
    Krapf, Diego
    Wylomanska, Agnieszka
    CHAOS, 2022, 32 (08)
  • [5] Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity
    Antoine Ayache
    Journal of Theoretical Probability, 2013, 26 : 72 - 93
  • [6] Linear Multifractional Stable Motion: Wavelet Estimation of H(·) and α Parameters*
    Antoine Ayache
    Julien Hamonier
    Lithuanian Mathematical Journal, 2015, 55 : 159 - 192
  • [7] Linear multifractional stable motion: Wavelet estimation of H(.) and α parameters
    Ayache, Antoine
    Hamonier, Julien
    LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (02) : 159 - 192
  • [8] Wavelet-based synthesis of the multifractional brownian motion
    School of Electronics and Information Engineering, Beihang University, Beijing 100083, China
    不详
    Chin J Electron, 2008, 3 (537-540):
  • [9] Wavelet-based synthesis of the multifractional Brownian motion
    Wang Zhaorui
    Lue Shanwei
    Nakamura, Taketsune
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (03): : 537 - 540
  • [10] Estimation of the global regularity of a multifractional Brownian motion
    Lebovits, Joachim
    Podolskij, Mark
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 78 - 98