Wavelet-based synthesis of the multifractional brownian motion

被引:0
|
作者
School of Electronics and Information Engineering, Beihang University, Beijing 100083, China [1 ]
不详 [2 ]
机构
来源
Chin J Electron | 2008年 / 3卷 / 537-540期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Wavelet-based synthesis of the multifractional Brownian motion
    Wang Zhaorui
    Lue Shanwei
    Nakamura, Taketsune
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (03): : 537 - 540
  • [2] Wavelet-based synthesis of a multifractional process
    Wang, Zhao-rui
    Lue, Shan-wei
    Nakamura, Taketsune
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 331 - +
  • [3] Wavelet-based estimations in fractional Brownian motion
    D'Attellis, CE
    Hirchoren, GA
    LATIN AMERICAN APPLIED RESEARCH, 1999, 29 (3-4) : 221 - 225
  • [4] Wavelet-based simulation of fractional Brownian motion revisited
    Pipiras, V
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 49 - 60
  • [5] Evaluation for convergence of wavelet-based estimators on fractional Brownian motion
    Kawasaki, S
    Morita, H
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 470 - 470
  • [6] Identification of multifractional Brownian motion
    Coeurjolly, JF
    BERNOULLI, 2005, 11 (06) : 987 - 1008
  • [7] A Generalization of Multifractional Brownian Motion
    Gupta, Neha
    Kumar, Arun
    Leonenko, Nikolai
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [8] The Generalized Multifractional Brownian Motion
    Antoine Ayache
    Jacques Levy Vehel
    Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 7 - 18
  • [9] Testing of Multifractional Brownian Motion
    Balcerek, Michal
    Burnecki, Krzysztof
    ENTROPY, 2020, 22 (12) : 1 - 17
  • [10] Extremes of standard multifractional Brownian motion
    Bai, Long
    STATISTICS & PROBABILITY LETTERS, 2020, 159