Tree inference for single-cell data

被引:0
|
作者
Katharina Jahn
Jack Kuipers
Niko Beerenwinkel
机构
[1] Department of Biosystems Science and Engineering,
[2] SIB,undefined
来源
Genome Biology | / 17卷
关键词
Markov Chain Monte Carlo; Tree Reconstruction; Mutation Tree; Markov Chain Monte Carlo Chain; Mutation Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the mutational heterogeneity within tumors is a keystone for the development of efficient cancer therapies. Here, we present SCITE, a stochastic search algorithm to identify the evolutionary history of a tumor from noisy and incomplete mutation profiles of single cells. SCITE comprises a flexible Markov chain Monte Carlo sampling scheme that allows the user to compute the maximum-likelihood mutation history, to sample from the posterior probability distribution, and to estimate the error rates of the underlying sequencing experiments. Evaluation on real cancer data and on simulation studies shows the scalability of SCITE to present-day single-cell sequencing data and improved reconstruction accuracy compared to existing approaches.
引用
收藏
相关论文
共 50 条
  • [31] Trajectory inference from single-cell genomics data with a process time model
    Fang, Meichen
    Gorin, Gennady
    Pachter, Lior
    PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (01)
  • [32] Inference of clonal selection in cancer populations using single-cell sequencing data
    Skums, Pavel
    Tsyvina, Viachaslau
    Zelikovsky, Alex
    BIOINFORMATICS, 2019, 35 (14) : I398 - I407
  • [33] Inference after latent variable estimation for single-cell RNA sequencing data
    Neufeld, Anna
    Gao, Lucy L.
    Popp, Joshua
    Battle, Alexis
    Witten, Daniela
    BIOSTATISTICS, 2023, 25 (01) : 270 - 287
  • [34] scphaser: haplotype inference using single-cell RNA-seq data
    Edsgard, Daniel
    Reinius, Bjorn
    Sandberg, Rickard
    BIOINFORMATICS, 2016, 32 (19) : 3038 - 3040
  • [35] A comparison of single-cell trajectory inference methods
    Wouter Saelens
    Robrecht Cannoodt
    Helena Todorov
    Yvan Saeys
    Nature Biotechnology, 2019, 37 : 547 - 554
  • [36] Data integration and inference of gene regulation using single-cell temporal multimodal data with scTIE
    Lin, Yingxin
    Wu, Tung-Yu
    Chen, Xi
    Wan, Sheng
    Chao, Brian
    Xin, Jingxue
    Yang, Jean Y. H.
    Wong, Wing H.
    Wang, Y. X. Rachel
    GENOME RESEARCH, 2024, 34 (01) : 119 - 133
  • [37] A comparison of single-cell trajectory inference methods
    Saelens, Wouter
    Cannoodt, Robrecht
    Todorov, Helena
    Saeys, Yvan
    NATURE BIOTECHNOLOGY, 2019, 37 (05) : 547 - 554
  • [38] GENE REGULATORY EFFECTS INFERENCE FOR CELL FATE DETERMINATION BASED ON SINGLE-CELL RESOLUTION DATA
    Huang, Xiao-Tai
    Chan, Leanne L. H.
    Zhao, Zhong-Ying
    Yan, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL. 1, 2015, : 283 - 288
  • [39] A large-scale benchmark for network inference from single-cell perturbation data
    Chevalley, Mathieu
    Roohani, Yusuf H.
    Mehrjou, Arash
    Leskovec, Jure
    Schwab, Patrick
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [40] Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
    Aditya Pratapa
    Amogh P. Jalihal
    Jeffrey N. Law
    Aditya Bharadwaj
    T. M. Murali
    Nature Methods, 2020, 17 : 147 - 154