Tree inference for single-cell data

被引:0
|
作者
Katharina Jahn
Jack Kuipers
Niko Beerenwinkel
机构
[1] Department of Biosystems Science and Engineering,
[2] SIB,undefined
来源
关键词
Markov Chain Monte Carlo; Tree Reconstruction; Mutation Tree; Markov Chain Monte Carlo Chain; Mutation Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the mutational heterogeneity within tumors is a keystone for the development of efficient cancer therapies. Here, we present SCITE, a stochastic search algorithm to identify the evolutionary history of a tumor from noisy and incomplete mutation profiles of single cells. SCITE comprises a flexible Markov chain Monte Carlo sampling scheme that allows the user to compute the maximum-likelihood mutation history, to sample from the posterior probability distribution, and to estimate the error rates of the underlying sequencing experiments. Evaluation on real cancer data and on simulation studies shows the scalability of SCITE to present-day single-cell sequencing data and improved reconstruction accuracy compared to existing approaches.
引用
收藏
相关论文
共 50 条
  • [1] Tree inference for single-cell data
    Jahn, Katharina
    Kuipers, Jack
    Beerenwinkel, Niko
    GENOME BIOLOGY, 2016, 17
  • [2] Parameter inference for stochastic single-cell dynamics from lineage tree data
    Kuzmanovska, Irena
    Milias-Argeitis, Andreas
    Mikelson, Jan
    Zechner, Christoph
    Khammash, Mustafa
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [3] Conifer: clonal tree inference for tumor heterogeneity with single-cell and bulk sequencing data
    Leila Baghaarabani
    Sama Goliaei
    Mohammad-Hadi Foroughmand-Araabi
    Seyed Peyman Shariatpanahi
    Bahram Goliaei
    BMC Bioinformatics, 22
  • [4] Conifer: clonal tree inference for tumor heterogeneity with single-cell and bulk sequencing data
    Baghaarabani, Leila
    Goliaei, Sama
    Foroughmand-Araabi, Mohammad-Hadi
    Shariatpanahi, Seyed Peyman
    Goliaei, Bahram
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [5] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : I394 - I403
  • [6] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : i394 - i403
  • [7] Cell-connectivity-guided trajectory inference from single-cell data
    Smolander, Johannes
    Junttila, Sini
    Elo, Laura L.
    BIOINFORMATICS, 2023, 39 (09)
  • [8] Scelestial: Fast and accurate single-cell lineage tree inference based on a Steiner tree approximation algorithm
    Foroughmand-Araabi, Mohammad-Hadi
    Goliaei, Sama
    Mchardy, Alice C.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (08)
  • [9] Modeling and analyzing single-cell multimodal data with deep parametric inference
    Hu, Huan
    Feng, Zhen
    Lin, Hai
    Zhao, Junjie
    Zhang, Yaru
    Xu, Fei
    Chen, Lingling
    Chen, Feng
    Ma, Yunlong
    Su, Jianzhong
    Zhao, Qi
    Shuai, Jianwei
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [10] Visualization and cellular hierarchy inference of single-cell data using SPADE
    Anchang, Benedict
    Hart, Tom D. P.
    Bendall, Sean C.
    Qiu, Peng
    Bjornson, Zach
    Linderman, Michael
    Nolan, Garry P.
    Plevritis, Sylvia K.
    NATURE PROTOCOLS, 2016, 11 (07) : 1264 - 1279