On the qualitative behaviour of symplectic integrators Part I: Perturbed linear systems

被引:0
|
作者
Daniel Stoffer
机构
[1] Department of Mathematics,
[2] ETH-Zürich,undefined
[3] CH-8092 Zürich,undefined
[4] Switzerland ,undefined
来源
Numerische Mathematik | 1997年 / 77卷
关键词
Mathematics Subject Classification (1991):65L06;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a dissipative perturbation of non–resonant harmonic oscillators. Under the perturbation the system admits a weakly attractive invariant torus. We apply a Runge-Kutta method to the system. If the integration method is symplectic then it also admits an attractive invariant torus, the step-size being independent of the perturbation parameter. For non–symplectic methods the discrete system only admits an attractive invariant torus if the step-size is so small such that the discretisation error is smaller than the perturbation.
引用
收藏
页码:535 / 547
页数:12
相关论文
共 50 条
  • [21] SYMPLECTIC INTEGRATORS FOR HAMILTONIAN-SYSTEMS - BASIC THEORY
    YOSHIDA, H
    IAU SYMPOSIA, 1992, (152): : 407 - 411
  • [22] Explicit adaptive symplectic integrators for solving Hamiltonian systems
    Blanes, Sergio
    Iserles, Arieh
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 114 (03): : 297 - 317
  • [23] SYMPLECTIC NUMERICAL INTEGRATORS IN CONSTRAINED HAMILTONIAN-SYSTEMS
    LEIMKUHLER, BJ
    SKEEL, RD
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (01) : 117 - 125
  • [24] On the accuracy of symplectic integrators for secularly evolving planetary systems
    Rein, Hanno
    Brown, Garett
    Tamayo, Daniel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 5122 - 5133
  • [25] Explicit adaptive symplectic integrators for solving Hamiltonian systems
    Sergio Blanes
    Arieh Iserles
    Celestial Mechanics and Dynamical Astronomy, 2012, 114 : 297 - 317
  • [26] Improved Leap—Frog Symplectic Integrators for Orbits of Small Eccentricity in the Perturbed Kepler Problem
    Massimiliano Guzzo
    Celestial Mechanics and Dynamical Astronomy, 2001, 80 : 63 - 80
  • [27] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Zhaodong Ding
    Zaijiu Shang
    ScienceChina(Mathematics), 2018, 61 (09) : 29 - 50
  • [28] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Ding, Zhaodong
    Shang, Zaijiu
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1567 - 1588
  • [29] SEMIEXPLICIT SYMPLECTIC INTEGRATORS FOR NON-SEPARABLE HAMILTONIAN SYSTEMS
    Jayawardana, Buddhika
    Ohsawa, Tomoki
    MATHEMATICS OF COMPUTATION, 2022, 92 (339) : 251 - 281
  • [30] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Zhaodong Ding
    Zaijiu Shang
    Science China Mathematics, 2018, 61 : 1567 - 1588