On the qualitative behaviour of symplectic integrators Part I: Perturbed linear systems

被引:0
|
作者
Daniel Stoffer
机构
[1] Department of Mathematics,
[2] ETH-Zürich,undefined
[3] CH-8092 Zürich,undefined
[4] Switzerland ,undefined
来源
Numerische Mathematik | 1997年 / 77卷
关键词
Mathematics Subject Classification (1991):65L06;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a dissipative perturbation of non–resonant harmonic oscillators. Under the perturbation the system admits a weakly attractive invariant torus. We apply a Runge-Kutta method to the system. If the integration method is symplectic then it also admits an attractive invariant torus, the step-size being independent of the perturbation parameter. For non–symplectic methods the discrete system only admits an attractive invariant torus if the step-size is so small such that the discretisation error is smaller than the perturbation.
引用
收藏
页码:535 / 547
页数:12
相关论文
共 50 条