Analogues of the Balog–Wooley Decomposition for Subsets of Finite Fields and Character Sums with Convolutions

被引:0
|
作者
Oliver Roche-Newton
Igor E. Shparlinski
Arne Winterhof
机构
[1] Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
[2] University of New South Wales,School of Mathematics and Statistics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Finite fields; Convolution; Inversions; Sumsets; Energy; Character sums; 11B30; 11T30;
D O I
暂无
中图分类号
学科分类号
摘要
Balog and Wooley have recently proved that any subset A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} of either real numbers or of a prime finite field can be decomposed into two parts U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}$$\end{document} and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document}, one of small additive energy and the other of small multiplicative energy. In the case of arbitrary finite fields, we obtain an analogue that under some natural restrictions for a rational function f both the additive energies of U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}$$\end{document} and f(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {V}})$$\end{document} are small. Our method is based on bounds of character sums which leads to the restriction #A>q1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\# {\mathcal {A}}> q^{1/2}$$\end{document}, where q is the field size. The bound is optimal, up to logarithmic factors, when #A≥q9/13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\# {\mathcal {A}}\ge q^{9/13}$$\end{document}. Using f(X)=X-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(X)=X^{-1}$$\end{document} we apply this result to estimate some triple additive and multiplicative character sums involving three sets with convolutions ab+ac+bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+ac+bc$$\end{document} with variables a, b, c running through three arbitrary subsets of a finite field.
引用
收藏
页码:183 / 205
页数:22
相关论文
共 33 条
  • [21] Double character sums over elliptic curves and finite fields
    Banks, William D.
    Friedlander, John B.
    Garaev, Moubariz Z.
    Shparlinski, Igor E.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (01) : 179 - 197
  • [22] Character sums over elements of extensions of finite fields with restricted coordinates
    Iyer, Siddharth
    Shparlinski, Igor E.
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 93
  • [23] An improvement on Weil bounds for character sums of polynomials over finite fields
    Li, Fengwei
    Meng, Fanhui
    Heng, Ziling
    Yue, Qin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (04): : 879 - 887
  • [24] POLYA-VINOGRADOV INEQUALITY FOR POLYNOMIAL CHARACTER SUMS OVER FINITE FIELDS
    Zheng, Zhiyong
    Hong, Ziwei
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 443 - 452
  • [25] Character sums over Galois rings and primitive polynomials over finite fields
    Fan, SQ
    Han, WB
    FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (01) : 36 - 52
  • [26] Equations in finite fields with restricted solution sets. I (Character sums)
    K. Gyarmati
    A. Sárközy
    Acta Mathematica Hungarica, 2008, 118 : 129 - 148
  • [27] Equations in finite fields with restricted solution sets.: I (character sums)
    Gyarmati, K.
    Sarkozy, A.
    ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) : 129 - 148
  • [28] Double and triple character sums and gaps between the elements of subgroups of finite fields
    Wang, Jiankang
    Xu, Zhefeng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (07) : 1725 - 1737
  • [29] Incomplete character sums over finite fields and their application to the interpolation of the discrete logarithm by Boolean functions
    Lange, T
    Winterhof, A
    ACTA ARITHMETICA, 2002, 101 (03) : 223 - 229
  • [30] Estimates for Character Sums in Finite Fields of Order p2 and p3
    M. R. Gabdullin
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 36 - 49