Analogues of the Balog–Wooley Decomposition for Subsets of Finite Fields and Character Sums with Convolutions
被引:0
|
作者:
Oliver Roche-Newton
论文数: 0引用数: 0
h-index: 0
机构:Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
Oliver Roche-Newton
Igor E. Shparlinski
论文数: 0引用数: 0
h-index: 0
机构:Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
Igor E. Shparlinski
Arne Winterhof
论文数: 0引用数: 0
h-index: 0
机构:Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
Arne Winterhof
机构:
[1] Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
[2] University of New South Wales,School of Mathematics and Statistics
来源:
Annals of Combinatorics
|
2019年
/
23卷
关键词:
Finite fields;
Convolution;
Inversions;
Sumsets;
Energy;
Character sums;
11B30;
11T30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Balog and Wooley have recently proved that any subset A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document} of either real numbers or of a prime finite field can be decomposed into two parts U\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {U}}$$\end{document} and V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {V}}$$\end{document}, one of small additive energy and the other of small multiplicative energy. In the case of arbitrary finite fields, we obtain an analogue that under some natural restrictions for a rational function f both the additive energies of U\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {U}}$$\end{document} and f(V)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f({\mathcal {V}})$$\end{document} are small. Our method is based on bounds of character sums which leads to the restriction #A>q1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\# {\mathcal {A}}> q^{1/2}$$\end{document}, where q is the field size. The bound is optimal, up to logarithmic factors, when #A≥q9/13\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\# {\mathcal {A}}\ge q^{9/13}$$\end{document}. Using f(X)=X-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(X)=X^{-1}$$\end{document} we apply this result to estimate some triple additive and multiplicative character sums involving three sets with convolutions ab+ac+bc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ab+ac+bc$$\end{document} with variables a, b, c running through three arbitrary subsets of a finite field.
机构:
St.Petersburg Department of the Steklov Mathematical Institute, St.PetersburgSt.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg