Analogues of the Balog–Wooley Decomposition for Subsets of Finite Fields and Character Sums with Convolutions

被引:0
|
作者
Oliver Roche-Newton
Igor E. Shparlinski
Arne Winterhof
机构
[1] Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
[2] University of New South Wales,School of Mathematics and Statistics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Finite fields; Convolution; Inversions; Sumsets; Energy; Character sums; 11B30; 11T30;
D O I
暂无
中图分类号
学科分类号
摘要
Balog and Wooley have recently proved that any subset A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} of either real numbers or of a prime finite field can be decomposed into two parts U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}$$\end{document} and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document}, one of small additive energy and the other of small multiplicative energy. In the case of arbitrary finite fields, we obtain an analogue that under some natural restrictions for a rational function f both the additive energies of U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}$$\end{document} and f(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {V}})$$\end{document} are small. Our method is based on bounds of character sums which leads to the restriction #A>q1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\# {\mathcal {A}}> q^{1/2}$$\end{document}, where q is the field size. The bound is optimal, up to logarithmic factors, when #A≥q9/13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\# {\mathcal {A}}\ge q^{9/13}$$\end{document}. Using f(X)=X-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(X)=X^{-1}$$\end{document} we apply this result to estimate some triple additive and multiplicative character sums involving three sets with convolutions ab+ac+bc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+ac+bc$$\end{document} with variables a, b, c running through three arbitrary subsets of a finite field.
引用
收藏
页码:183 / 205
页数:22
相关论文
共 33 条