Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform

被引:0
|
作者
Tran Thi Nhu Thao
Fabien Labroussaa
Nadine Ebert
Philip V’kovski
Hanspeter Stalder
Jasmine Portmann
Jenna Kelly
Silvio Steiner
Melle Holwerda
Annika Kratzel
Mitra Gultom
Kimberly Schmied
Laura Laloli
Linda Hüsser
Manon Wider
Stephanie Pfaender
Dagny Hirt
Valentina Cippà
Silvia Crespo-Pomar
Simon Schröder
Doreen Muth
Daniela Niemeyer
Victor M. Corman
Marcel A. Müller
Christian Drosten
Ronald Dijkman
Joerg Jores
Volker Thiel
机构
[1] Institute of Virology and Immunology (IVI),Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
[2] University of Bern,Graduate School for Biomedical Science
[3] University of Bern,Institute of Veterinary Bacteriology, Vetsuisse Faculty
[4] University of Bern,Insitute for Infectious Diseases
[5] University of Bern,Department for Molecular and Medical Virology
[6] Ruhr-Universität Bochum,Institute of Virology, Charité
[7] corporate member of Freie Universität Berlin,Universitätsmedizin Berlin
[8] Humboldt-Universität zu Berlin,German Centre for Infection Research
[9] and Berlin Institute of Health,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases
[10] associated partner Charité,undefined
[11] Sechenov University,undefined
来源
Nature | 2020年 / 582卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1–3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.
引用
收藏
页码:561 / 565
页数:4
相关论文
共 50 条
  • [41] Characterization of SARS-CoV-2 using the Ion AmpliSeq SARS-CoV-2 research panel
    Unselt, Desiree
    Knudsen, Katherine
    Rounds, Christopher
    Doolittle-Hall, Janet
    Torres, Fernando
    Sims, Jennifer
    Mason, Jennifer
    CANCER RESEARCH, 2022, 82 (12)
  • [42] Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform
    Kipfer, Enja Tatjana
    Hauser, David
    Lett, Martin J.
    Otte, Fabian
    Urda, Lorena
    Zhang, Yuepeng
    Lang, Christopher M. R.
    Chami, Mohamed
    Mittelholzer, Christian
    Klimkait, Thomas
    ELIFE, 2023, 12
  • [43] SARS-CoV-2 vaccine candidates in rapid development
    Li, Lifeng
    Guo, Pengbo
    Zhang, Xiaoman
    Yu, Zhidan
    Zhang, Wancun
    Sun, Huiqing
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2021, 17 (03) : 644 - 653
  • [44] Infection and Rapid Transmission of SARS-CoV-2 in Ferrets
    Kim, Young-Il
    Kim, Seong-Gyu
    Kim, Se-Mi
    Kim, Eun-Ha
    Park, Su-Jin
    Yu, Kwang-Min
    Chang, Jae-Hyung
    Kim, Eun Ji
    Lee, Seunghun
    Casel, Mark Anthony B.
    Um, Jihye
    Song, Min-Suk
    Jeong, Hye Won
    Lai, Van Dam
    Kim, Yeonjae
    Chin, Bum Sik
    Park, Jun-Sun
    Chung, Ki-Hyun
    Foo, Suan-Sin
    Poo, Haryoung
    Mo, In-Pil
    Lee, Ok-Jun
    Webby, Richard J.
    Jung, Jae U.
    Choi, Young Ki
    CELL HOST & MICROBE, 2020, 27 (05) : 704 - +
  • [45] Rapid response modeling of SARS-CoV-2 transmission
    Zelner, Jon
    Eisenberg, Marisa
    SCIENCE, 2022, 376 (6593) : 579 - 580
  • [46] The Sensitivity of Rapid Tests for SARS-CoV-2 Antigen
    Knies, Kerstin
    Wagenhaeuser, Isabell
    Hofmann, Daniela
    Rauschenberger, Vera
    Eisenmann, Michael
    Reusch, Julia
    Flemming, Sven
    Andres, Oliver
    Petri, Nils
    Topp, Max S.
    Papsdorf, Michael
    Mcdonogh, Miriam
    Verma-Fuehring, Raoul
    Scherzad, Agmal
    Zeller, Daniel
    Boehm, Hartmut
    Gesierich, Anja
    Seitz, Anna Katharina
    Kiderlen, Michael
    Gawlik, Micha
    Taurines, Regina
    Wurmb, Thomas
    Ernestus, Ralf-Ingo
    Forster, Johannes
    Weismann, Dirk
    Weissbrich, Benedikt
    Liese, Johannes
    Vogel, Ulrich
    Kurzai, Oliver
    Doelken, Lars
    Gabel, Alexander
    Krone, Manuel
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2023, 120 (45): : 763 - 764
  • [47] SARS-CoV-2 rapid antigen detection tests
    Fouzas, Sotirios
    LANCET INFECTIOUS DISEASES, 2021, 21 (08): : 1068 - 1069
  • [48] Assessment of SARS-CoV-2 rapid antigen tests
    Oezcueruemez, Mustafa
    Katsounas, Antonios
    Holdenrieder, Stefan
    von Meyer, Alexander
    Renz, Harald
    Woelfel, Roman
    JOURNAL OF LABORATORY MEDICINE, 2021, 45 (03) : 143 - 148
  • [49] The Improbability of the Rapid Development of a Vaccine for SARS-CoV-2
    Morris, Kevin V.
    MOLECULAR THERAPY, 2020, 28 (07) : 1548 - 1549
  • [50] Rapid Inactivation of SARS-CoV-2 with Ozonated Water
    Inagaki, Hiroko
    Saito, Akatsuki
    Sudaryatma, Putu Eka
    Sugiyama, Hironobu
    Okabayashi, Tamaki
    Fujimoto, Shouichi
    OZONE-SCIENCE & ENGINEERING, 2021, 43 (03) : 208 - 212