Existence of capacity solution for a nonlocal thermistor problem in Musielak–Orlicz–Sobolev spaces

被引:0
|
作者
Ibrahim Dahi
Moulay Rchid Sidi Ammi
机构
[1] Moulay Ismail University of Meknès,AMNEA Group, MAIS Laboratory, Faculty of Sciences and Technology Errachidia
来源
关键词
Existence; Capacity solution; Nonlinear parabolic equation; Thermistor problem; Musielak–Orlicz–Sobolev spaces; 35J60; 32U20; 35J60; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the existence of a capacity solution for a nonlocal thermistor problem in Musielak–Orlicz–Sobolev spaces. We get the existence of capacity solution using the approximate techniques and we prove the existence of a weak solution by introducing a sequence of approximate problems converging in a certain sense to a capacity solution. As a consequence, we obtain the existence of a capacity solution of the original problem in Musielak–Orlicz–Sobolev Lebesgue spaces.
引用
收藏
相关论文
共 50 条
  • [21] EXISTENCE OF A SOLUTION TO A NONLINEAR ELLIPTIC EQUATION IN A MUSIELAK-ORLICZ-SOBOLEV SPACE FOR AN UNBOUNDED DOMAIN
    Kozhevnikova, L. M.
    Kashnikova, A. P.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 2055 - 2067
  • [22] Hardy's inequality in Musielak-Orlicz-Sobolev spaces
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    HIROSHIMA MATHEMATICAL JOURNAL, 2014, 44 (02) : 139 - 155
  • [23] Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications
    Fan, Xianling
    Guan, Chun-Xia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 163 - 175
  • [24] On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems
    J. C. de Albuquerque
    L. R. S. de Assis
    M. L. M. Carvalho
    A. Salort
    The Journal of Geometric Analysis, 2023, 33
  • [25] Existence of Entropic Solutions of an Elliptic Problem in Anisotropic Sobolev–Orlicz Spaces
    Kozhevnikova L.M.
    Journal of Mathematical Sciences, 2019, 241 (3) : 258 - 284
  • [26] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz–Sobolev spaces
    Pablo Ochoa
    Analía Silva
    Maria José Suarez Marziani
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 21 - 47
  • [27] Existence of solutions for a class of nonlinear elliptic problems with measure data in the setting of Musielak–Orlicz –Sobolev spaces
    Abdelmoujib Benkirane
    Nourdine EL Amarty
    Badr EL Haji
    Mostafa EL Moumni
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 647 - 672
  • [28] On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces
    L. M. Kozhevnikova
    Computational Mathematics and Mathematical Physics, 2017, 57 : 434 - 452
  • [29] MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Xiang, Mingqi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (02): : 287 - 303
  • [30] Capacity for potentials of functions in Musielak-Orlicz spaces
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6231 - 6243