propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis

被引:0
|
作者
Thomas P. Quinn
Mark F. Richardson
David Lovell
Tamsyn M. Crowley
机构
[1] Deakin University,
[2] Bioinformatics Core Research Group,undefined
[3] Geelong,undefined
[4] Deakin University,undefined
[5] Centre for Molecular and Medical Research,undefined
[6] Geelong,undefined
[7] Deakin University,undefined
[8] Centre for Integrative Ecology,undefined
[9] Geelong,undefined
[10] Queensland University of Technology,undefined
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the life sciences, many assays measure only the relative abundances of components in each sample. Such data, called compositional data, require special treatment to avoid misleading conclusions. Awareness of the need for caution in analyzing compositional data is growing, including the understanding that correlation is not appropriate for relative data. Recently, researchers have proposed proportionality as a valid alternative to correlation for calculating pairwise association in relative data. Although the question of how to best measure proportionality remains open, we present here a computationally efficient R package that implements three measures of proportionality. In an effort to advance the understanding and application of proportionality analysis, we review the mathematics behind proportionality, demonstrate its application to genomic data, and discuss some ongoing challenges in the analysis of relative abundance data.
引用
收藏
相关论文
共 50 条
  • [31] Visualizing adverse events in clinical trials using correspondence analysis with R-package visae
    Márcio A. Diniz
    Gillian Gresham
    Sungjin Kim
    Michael Luu
    N. Lynn Henry
    Mourad Tighiouart
    Greg Yothers
    Patricia A. Ganz
    André Rogatko
    BMC Medical Research Methodology, 21
  • [32] The PowerSDI: an R-package for implementing and calculating the SPI and SPEI using data from the NASAPOWER project
    Blain, Gabriel Constantino
    Sobierajski, Graciela da Rocha
    Martins, Leticia Lopes
    BRAGANTIA, 2024, 83
  • [33] MMRFBiolinks: an R-package for integrating and analyzing MMRF-CoMMpass data
    Settino, Marzia
    Cannataro, Mario
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [34] ShrinkBayes: a versatile R-package for analysis of count-based sequencing data in complex study designs
    van de Wiel, Mark A.
    Neerincx, Maarten
    Buffart, Tineke E.
    Sie, Daoud
    Verheul, Henk M. W.
    BMC BIOINFORMATICS, 2014, 15
  • [35] ShrinkBayes: a versatile R-package for analysis of count-based sequencing data in complex study designs
    Mark A van de Wiel
    Maarten Neerincx
    Tineke E Buffart
    Daoud Sie
    Henk MW Verheul
    BMC Bioinformatics, 15
  • [36] A novel R-package graphic user interface for the analysis of metabonomic profiles
    Jose L Izquierdo-García
    Ignacio Rodríguez
    Angelos Kyriazis
    Palmira Villa
    Pilar Barreiro
    Manuel Desco
    Jesús Ruiz-Cabello
    BMC Bioinformatics, 10
  • [37] compositions: A unified R package to analyze compositional data
    van den Boogaart, K. Gerald
    Tolosana-Delgado, R.
    COMPUTERS & GEOSCIENCES, 2008, 34 (04) : 320 - 338
  • [38] ViSiElse: an innovative R-package to visualize raw behavioral data over time
    Garnier, Elodie M.
    Fouret, Nastasia
    Descoins, Mederic
    PEERJ, 2020, 8
  • [39] INFLECT: an R-package for cytometry cluster evaluation using marker modality
    Jan Verhoeff
    Sanne Abeln
    Juan J. Garcia-Vallejo
    BMC Bioinformatics, 23
  • [40] Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth
    Merinero, Raul
    Cardenes, Victor
    MINERALOGY AND PETROLOGY, 2018, 112 (04) : 577 - 589