The rectilinear three-body problem as a basis for studying highly eccentric systems

被引:0
|
作者
G. Voyatzis
K. Tsiganis
M. Gaitanas
机构
[1] Aristotle University of Thessaloniki,Department of Physics
关键词
Elliptic restricted TBP; Rectilinear model; Periodic orbits; Orbital stability; Planetary systems;
D O I
暂无
中图分类号
学科分类号
摘要
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity e′=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e'=1$$\end{document}, but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter μ=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu =0.5$$\end{document} (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and e′<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e'<1$$\end{document}. Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.
引用
收藏
相关论文
共 50 条
  • [21] Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem
    D. I. Abramov
    Physics of Atomic Nuclei, 2013, 76 : 196 - 207
  • [22] The rectilinear three-body problem using symbol sequence II: role of the periodic orbits
    Saito, Masaya Masayoshi
    Tanikawa, Kiyotaka
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 103 (03): : 191 - 207
  • [23] The rectilinear three-body problem using symbol sequence II: role of the periodic orbits
    Masaya Masayoshi Saito
    Kiyotaka Tanikawa
    Celestial Mechanics and Dynamical Astronomy, 2009, 103 : 191 - 207
  • [24] Quasiintegrals of the photogravitational eccentric restricted three-body problem with Poynting–Robertson drag
    G. F. Chörny
    Celestial Mechanics and Dynamical Astronomy, 2007, 97 : 229 - 248
  • [25] Approach to studying three-body processes
    Mebonia, JV
    Abusini, MA
    Saralidze, PJ
    Sulakadze, KI
    Skhirtladze, GÉ
    PHYSICS OF ATOMIC NUCLEI, 2000, 63 (12) : 2085 - 2090
  • [26] Approach to studying three-body processes
    J. V. Mebonia
    M. A. Abusini
    P. J. Saralidze
    K. I. Sulakadze
    G. É. Skhirtladze
    Physics of Atomic Nuclei, 2000, 63 : 2085 - 2090
  • [27] The rectilinear three-body problem using symbol sequence I. Role of triple collision
    Masaya Masayoshi Saito
    Kiyotaka Tanikawa
    Celestial Mechanics and Dynamical Astronomy, 2007, 98 : 95 - 120
  • [28] The rectilinear three-body problem using symbol sequence I. Role of triple collision
    Saito, Masaya Masayoshi
    Tanikawa, Kiyotaka
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 98 (02): : 95 - 120
  • [29] Three-body force and Coulomb force in three-body systems
    Oryu, S.
    Hiratsuka, Y.
    Nishinohara, S.
    Gojuki, S.
    Chiba, S.
    NEW FACET OF THREE NUCLEON FORCE - 50 YEARS OF FUJITA MIYAZAWA THREE NUCLEON FORCE (FM 50), 2007, 1011 : 265 - +
  • [30] Three-Body Coulomb Problem
    Combescot, R.
    PHYSICAL REVIEW X, 2017, 7 (04):