Coloring decompositions of complete geometric graphs

被引:0
|
作者
C. Huemer
D. Lara
C. Rubio-Montiel
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtiques
[2] Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,Departamento de Computación
[3] Universidad Nacional Autónoma de México,División de Matemáticas e Ingeniería, FES Acatlán
[4] UMI LAFMIA 3175 CNRS at CINVESTAV-IPN,Department of Algebra
[5] Comenius University,undefined
来源
Acta Mathematica Hungarica | 2019年 / 159卷
关键词
geometric graph; coloring; geometric chromatic index;
D O I
暂无
中图分类号
学科分类号
摘要
A decomposition of a non-empty simple graph G is a pair [G,P] such that P is a set of non-empty induced subgraphs of G, and every edge of G belongs to exactly one subgraph in P. The chromatic index χ′([G,P])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi'([G,P])$$\end{document} of a decomposition [G,P] is the smallest number k for which there exists a k-coloring of the elements of P in such a way that for every element of P all of its edges have the same color, and if two members of P share at least one vertex, then they have different colors. A long standing conjecture of Erdős–Faber–Lovász states that every decomposition [Kn,P]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[K_{n}, P]$$\end{document} of the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} satisfies χ′([Kn,P])≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi'([K_{n}, P])\leq n$$\end{document}. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case when the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.
引用
收藏
页码:429 / 446
页数:17
相关论文
共 50 条
  • [21] Nomadic decompositions of bidirected complete graphs
    Cranston, Daniel W.
    DISCRETE MATHEMATICS, 2008, 308 (17) : 3982 - 3985
  • [22] Decompositions of Complete Graphs Into Paths and Cycles
    Shyu, Tay-Woei
    ARS COMBINATORIA, 2010, 97 : 257 - 270
  • [23] Decompositions of line graphs of complete graphs into paths and cycles
    Ganesamurthy, S.
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [24] HARMONIOUS COLORING OF MULTICOPY OF COMPLETE GRAPHS
    Muntaner-Batle, Francesc Antoni
    Vivin, Vernold J.
    Venkatachalam, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 384 - 395
  • [25] LIST COLORING OF COMPLETE MULTIPARTITE GRAPHS
    Vetrik, Tomas
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 31 - 37
  • [26] On edge decompositions of a complete graph into smaller complete graphs
    Faruqi, Shahab
    Katre, Shashikant A.
    Sarvate, Dinesh G.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2018, 106 : 83 - 107
  • [27] On-line coloring of geometric intersection graphs
    Erlebach, T
    Fiala, J
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 243 - 255
  • [28] Coloring the complements of intersection graphs of geometric figures
    Kim, Seog-Jin
    Nakprasit, Kittikorn
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4589 - 4594
  • [29] Compositions, decompositions, and conformability for total coloring on power of cycle graphs
    Zorzi, A.
    Figueiredo, C. M. H.
    Machado, R. C. S.
    Zatesko, L. M.
    Souza, U. S.
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 349 - 363
  • [30] DECOMPOSITIONS OF LINE GRAPHS, MIDDLE GRAPHS AND TOTAL GRAPHS OF COMPLETE GRAPHS INTO FORESTS
    AKIYAMA, J
    HAMADA, T
    DISCRETE MATHEMATICS, 1979, 26 (03) : 203 - 208