Modeling of the formation of oriented-polymer layers at filler particles in polymer nanocomposites

被引:0
|
作者
A. L. Svistkov
Lyudmila Andreevna Komar
G. Heinrich
B. Lauke
机构
[1] Russian Academy of Sciences,Institute of Continuous Media Mechanics, Ural Division
[2] Leibniz-Institut für Polymerforschung Dresden e.V.,undefined
来源
Polymer Science Series A | 2008年 / 50卷
关键词
Polymer Chain; Continuum Model; Polymer Science Series; Neighboring Region; Filler Particle;
D O I
暂无
中图分类号
学科分类号
摘要
A theory to explain the appearance of oriented layers at the filler surface in polymer nanocomposites is proposed. The theory is based on the assumption that small oriented polymer regions have an effect on the state of neighboring regions and tend to orient polymer chains in these regions. As a result, the point-to-point transfer of this effect takes place, thereby causing the propagation of the oriented layer in the polymer nanocomposite over a considerable distance from the filler surface. The appearance of the polymer in the biaxially oriented state, which is transferred to the neighboring regions and leads to the formation of a layer with specific mechanical properties, is possible near the filler particles in this case.
引用
收藏
页码:600 / 606
页数:6
相关论文
共 50 条
  • [21] Polymer based nanocomposites:: Effect of filler-filler and filler-matrix interactions
    Bréchet, Y
    Cavaillé, JYY
    Chabert, E
    Chazeau, L
    Dendievel, R
    Flandin, L
    Gauthier, C
    ADVANCED ENGINEERING MATERIALS, 2001, 3 (08) : 571 - 577
  • [22] Metal oxide mineral filler containing polymer nanocomposites
    Meri, Remo Merijs
    Shutka, Andris
    Zalite, Ilmars
    Bledzki, Andrzej K.
    NANOCOMPOSITE MATERIALS, 2009, 151 : 154 - +
  • [23] Mossbauer study of new functional metal/polymer nanocomposites with spatially oriented FeGa particles
    Zholudev, S. I.
    Kiseleva, T. Yu.
    HYPERFINE INTERACTIONS, 2014, 226 (1-3): : 375 - 382
  • [24] Micromechanics Modeling of Electrical Conductivity for Polymer Nanocomposites by Network Portion, Interphase Depth, Tunneling Properties and Wettability of Filler by Polymer Media
    Zare, Yasser
    Rhee, Kyong Yop
    FIBERS AND POLYMERS, 2021, 22 (05) : 1343 - 1351
  • [25] Modeling Film Formation of Polymer-Clay Nanocomposite Particles
    Patel, Milan J.
    Gundabala, Venkata R.
    Routh, Alexander F.
    LANGMUIR, 2010, 26 (06) : 3962 - 3971
  • [26] Micromechanics Modeling of Electrical Conductivity for Polymer Nanocomposites by Network Portion, Interphase Depth, Tunneling Properties and Wettability of Filler by Polymer Media
    Yasser Zare
    Kyong Yop Rhee
    Fibers and Polymers, 2021, 22 : 1343 - 1351
  • [27] Anomalous chain diffusion in polymer nanocomposites for varying polymer-filler interaction strengths
    Goswami, Monojoy
    Sumpter, Bobby G.
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [28] Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces
    Zhang, Xin
    Li, Bao-Wen
    Dong, Lijie
    Liu, Hanxin
    Chen, Wen
    Shen, Yang
    Nan, Ce-Wen
    ADVANCED MATERIALS INTERFACES, 2018, 5 (11):
  • [29] Terahertz absorption spectra of several polymer nanocomposites indicating polymer-filler interactions
    Mori, Keigo
    Seki, Tomofumi
    Hirai, Naoshi
    Ohki, Yoshimichi
    AIP ADVANCES, 2019, 9 (10)
  • [30] Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites
    Goswami, Monojoy
    Sumpter, Bobby G.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (13):