An investigation on groundwater geochemistry changes after 17 years: a case study from the west of Iran

被引:0
|
作者
Mahdi Jalali
Mohsen Jalali
机构
[1] Bu-Ali Sina University,Department of Soil Science, College of Agriculture
来源
关键词
Water quality; Different sampling years; Nitrate pollution; Arid environment;
D O I
暂无
中图分类号
学科分类号
摘要
The application of chemical and organic fertilizers to agricultural lands increases nutrient pools and affects soil and water quality. Understanding changes in groundwater quality due to the anthropogenic activities over time is important to human and ecosystem health. In 2017, we resampled 58 wells monitored in the year 2000 to evaluate the rate of changes in groundwater quality and water quality indices over time in response to agricultural and industrial activities and climate changes. The groundwater in two sampling years was dominated by Ca–HCO3 water type. The mean groundwater pH, electrical conductivity (EC), calcium (Ca2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}^{2 + }$$\end{document}), magnesium (Mg2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{2 + }$$\end{document}), and sodium (Na+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Na}}^{ + }$$\end{document}) concentrations did not significantly change over time, while a significant buildup in bicarbonate (HCO3-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text{HCO}}_{3}^{ - } )$$\end{document} (189–305 mg l−1), nitrate (NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document}) (41–56 mg l−1), chloride (Cl-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Cl}}^{ - }$$\end{document}) (57–77 mg l−1) and a significant decrease in sulfate (SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}) (159–91 mg l−1) and potassium (K+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{K}}^{ + }$$\end{document}) (3–2 mg l−1) was observed. In 2000, 45% of the water samples were classified as high salinity hazard, and this value increased to 52% by 2017, indicating that salinity of the water samples increased over 17 years. In 2000, only 25% of the total area had a NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} value greater than 50 mg l−1; and this value increased sharply to 62% by 2017, indicating that NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} concentrations significantly increased with approximately 2.2% annually in groundwater, over 17 years. Approximately, 55% of the groundwaters with NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} concentration values of less than 40 mg l−1 in 2000 shifts one to four categories upward in 2017. The percentage of water samples which was shifted to the next category with NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} concentration higher than 50 mg l−1 and approaching the limit of the World Health Organization was doubled in 2017 compared with 2000. High application of chemical and manure fertilizers in excess of crop needs should be avoided in the studied area to prevent continued increases in groundwater NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} concentrations.
引用
收藏
相关论文
共 50 条
  • [21] HYPERTENSION AND FLUORIDE IN DRINKING WATER: CASE STUDY FROM WEST AZERBAIJAN, IRAN
    Aghaei, Mina
    Karimzade, Sima
    Yaseri, Mehdi
    Khorsandi, Hasan
    Zolfi, Ebrahim
    Mahvi, Amir Hossein
    FLUORIDE, 2015, 48 (03) : 252 - 258
  • [22] Investigation and Potential Identification of Karsts as Groundwater Resources with the Help of GIS Studies, a Case Study of Western Iran
    Pourmorad, Saeid
    Abbasi, Samira
    Patel, Nilanchal
    Mohanty, Ashutosh
    LITHOLOGY AND MINERAL RESOURCES, 2022, 57 (06) : 584 - 599
  • [23] Investigation and Potential Identification of Karsts as Groundwater Resources with the Help of GIS Studies, a Case Study of Western Iran
    Saeid Pourmorad
    Samira Abbasi
    Nilanchal Patel
    Ashutosh Mohanty
    Lithology and Mineral Resources, 2022, 57 : 584 - 599
  • [24] Comprehensive investigation of groundwater quality in the north-west of Iran: Physicochemical and heavy metal analysis
    Shakerkhatibi, Mohammad
    Mosaferi, Mohammad
    Pourakbar, Mojtaba
    Ahmadnejad, Mehrdad
    Safavi, Navid
    Banitorab, Faranak
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2019, 8 : 156 - 168
  • [25] Investigation of a ceramic head retrieved after 20 years:: A case study
    Willmann, G
    Richter, HG
    Zweymüller, K
    BIOCERAMICS 14, 2002, 218-2 : 511 - 513
  • [26] An assessment of groundwater crisis in Iran case study: Fars province
    Hojjati, Mohammad Hossein
    Boustani, Fardin
    World Academy of Science, Engineering and Technology, 2010, 46 : 475 - 479
  • [27] Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran
    Chitsazan, Manouchehr
    Rahmani, Gholamreza
    Neyamadpour, Ahmad
    GEOPERSIA, 2013, 3 (01): : 35 - 46
  • [28] Suicide attempts in residents of Bam: 17 years after the Bam earthquake in Iran
    Amiri, Hadis
    Rezapour, Maysam
    Nakhaee, Nouzar
    Nekoei-Moghadam, Mahmoud
    Jahani, Yunes
    Moslehi, Shandiz
    MINERVA PSYCHIATRY, 2022, 63 (01): : 61 - 67
  • [29] Latent Profiles of Posttraumatic Growth: 17 years After the Bam Earthquake in Iran
    Amiri, Hadis
    Rezapour, Maysam
    Nakhaee, Nouzar
    Nekoei-Moghadam, Mahmoud
    Nasab, S. M. Hosein Musavi
    Nezhad, Mahboobe Shamsi
    Jahani, Yunes
    DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS, 2022, 17
  • [30] Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran
    Karimi, Poolad
    Qureshi, Asad Sarwar
    Bahramloo, Reza
    Molden, David
    AGRICULTURAL WATER MANAGEMENT, 2012, 108 : 52 - 60