Description and prediction of the development of metabolic syndrome in Dongying City: a longitudinal analysis using the Markov model

被引:0
|
作者
Xiaoxiao Chen
Qicai Chen
Lili Chen
Pengpeng Zhang
Juan Xiao
Shumei Wang
机构
[1] Shandong University,Department of Epidemiology and Biostatistics, School of Public Health
[2] Dongying Shengli Oilfield Central Hospital,Department of Prevention and Health Care
[3] Zhejiang Center for Disease Control and Prevention,Department of Nutrition and Food Safety
[4] Tianjin Entry-Exit Inspection and Quarantine Bureau,undefined
来源
关键词
Metabolic syndrome; Markov model; Dongying City;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A Longitudinal Analysis of Change in Lupus Nephritis in an International Inception Cohort Using a Multistate Markov Model Approach
    Hanly, John G.
    Su, Li
    Urowitz, Murray
    Romero-Diaz, Juanita
    Gordon, C.
    Bae, Sang-Cheol
    Bernatsky, Sasha R.
    Clarke, Ann
    Wallace, Daniel J.
    Merrill, Joan T.
    Isenberg, David A.
    Rahman, Anisur
    Ginzler, Ellen M.
    Fortin, Paul
    Gladman, Dafna D.
    Sanchez-Guerrero, Jorge
    Petri, Michelle
    Bruce, Ian N.
    Dooley, Mary Anne
    Ramsey-Goldman, Rosalind
    Aranow, Cynthia
    Alarcon, Graciela S.
    Fessler, Barri J.
    Steinsson, Kristjan
    Nived, Ola
    Sturfelt, Gunnar K.
    Manzi, Susan
    Khamashta, Munther
    van Vollenhoven, Ronald F.
    Zoma, Asad
    Ruiz-Irastorza, Guillermo
    Ramos-Casals, Manuel
    Lim, S. Sam
    Stoll, Thomas
    Inanc, Murat
    Kalunian, Kenneth C.
    Kamen, Diane L.
    Maddison, Peter
    Peschken, Christine A.
    Jacobsen, Soren
    Askanase, Anca
    Theriault, Chris
    Thompson, Kara
    Farewell, Vernon
    ARTHRITIS & RHEUMATOLOGY, 2015, 67
  • [42] Risk prediction of low temperature in Nanjing city based on grey weighted Markov model
    Gong, Zaiwu
    Chen, Caiqin
    Ge, Xinming
    NATURAL HAZARDS, 2014, 71 (02) : 1159 - 1180
  • [43] A LONGITUDINAL ANALYSIS OF CHANGE IN LUPUS NEPHRITIS IN AN INTERNATIONAL INCEPTION COHORT USING A MULTISTATE MARKOV MODEL APPROACH
    Hanly, J. G.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : 307 - 308
  • [44] Risk prediction of low temperature in Nanjing city based on grey weighted Markov model
    Zaiwu Gong
    Caiqin Chen
    Xinming Ge
    Natural Hazards, 2014, 71 : 1159 - 1180
  • [46] An Appraisal of Methods for the Analysis of Longitudinal Ordinal Response Data with Random Dropout Using a Nonhomogeneous Markov Model
    Ghahroodi, Z. Rezaei
    Ganjali, M.
    Navvabpour, H.
    Berridge, D.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (05) : 1027 - 1048
  • [47] A Method to Improve Accuracy of Velocity Prediction Using Markov Model
    Liu, Ya-dan
    Chu, Liang
    Xu, Nan
    Jia, Yi-fan
    Xu, Zhe
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 378 - 386
  • [48] Mobility Prediction in Cellular Network Using Hidden Markov Model
    Si, Hongbo
    Wang, Yue
    Yuan, Jian
    Shan, Xiuming
    2010 7TH IEEE CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE-CCNC 2010, 2010, : 1130 - 1134
  • [49] Web page prediction using Markov Model and Bayesian Statistics
    Cheriyan, Sunitha
    Chitra, K.
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [50] Failure Event Prediction Using Hidden Markov Model Approaches
    Vrignat, Pascal
    Avila, Manuel
    Duculty, Florent
    Kratz, Frederic
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (03) : 1038 - 1048