Higher-dimensional inhomogeneous perfect fluid collapse in f(R) gravity

被引:0
|
作者
G. Abbas
M. S. Khan
Zahid Ahmad
M. Zubair
机构
[1] The Islamia University of Bahawalpur,Department of Mathematics
[2] COMSATS Institute of Information Technology,Department of Mathematics
[3] COMSATS Institute of Information Technology,Department of Mathematics
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper is about the n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+2$$\end{document}-dimensional gravitational contraction of an inhomogeneous fluid without heat flux in the framework of a f(R) metric theory of gravity. Matching conditions for two regions of a star are derived by using the Darmois junction conditions. For the analytic solution of the equations of motion in modified f(R) theory of gravity, we have taken the scalar curvature constant. Hence the final result of gravitational collapse in this framework is the existence of black hole and cosmological horizons, and both of these form earlier than the singularity. It is shown that a constant curvature term f(R0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R_{0})$$\end{document} (R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} is the constant scalar curvature) slows down the collapsing process.
引用
收藏
相关论文
共 50 条
  • [21] GRAVITATIONAL COLLAPSE OF AN INHOMOGENEOUS DUST SPHERE IN HIGHER-DIMENSIONAL SPACETIME
    BANERJEE, A
    SIL, A
    CHATTERJEE, S
    ASTROPHYSICAL JOURNAL, 1994, 422 (02): : 681 - 687
  • [22] Collapsing perfect fluid in higher-dimensional spherical spacetimes
    da Rocha, JFV
    Wang, AZ
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (13) : 2589 - 2596
  • [23] Charged perfect fluid sphere in higher-dimensional spacetime
    P. Bhar
    T. Manna
    F. Rahaman
    Saibal Ray
    G. S. Khadekar
    Indian Journal of Physics, 2020, 94 : 1679 - 1690
  • [24] Charged perfect fluid sphere in higher-dimensional spacetime
    Bhar, P.
    Manna, T.
    Rahaman, F.
    Ray, S.
    Khadekar, G. S.
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (10) : 1679 - 1690
  • [25] Higher-dimensional holographic superconductors in Born–Infeld electrodynamics and f(R) gravity
    Alexandar Roussev
    The European Physical Journal C, 84
  • [26] Gravitational collapse in higher-dimensional Rastall gravity with and without cosmological constantGravitational collapse in higher-dimensional Rastall gravity...G. Ekatria et al.
    Golfin Ekatria
    Andy Octavian Latief
    Fiki Taufik Akbar
    Bobby Eka Gunara
    General Relativity and Gravitation, 2025, 57 (4)
  • [27] Higher dimensional perfect fluid collapse with cosmological constant
    Sharif, M.
    Ahmadi, Zahid
    ACTA PHYSICA POLONICA B, 2008, 39 (06): : 1337 - 1347
  • [28] PERFECT-FLUID HIGHER-DIMENSIONAL COSMOLOGIES .2.
    SAHDEV, D
    PHYSICAL REVIEW D, 1989, 39 (10): : 3155 - 3158
  • [29] Higher-dimensional holographic superconductors in Born-Infeld electrodynamics and f(R) gravity
    Roussev, Alexandar
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (02):
  • [30] Dynamics of perfect fluid collapse in f(g, T) gravity
    Sharif, M.
    Gul, M. Zeeshan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (03):