Improved Convergence Result for the Discrete Gradient and Secant Methods for Nonsmooth Optimization

被引:0
|
作者
K. C. Kiwiel
机构
[1] Polish Academy of Sciences,Systems Research Institute
来源
Journal of Optimization Theory and Applications | 2010年 / 144卷
关键词
Nonsmooth optimization; Derivative-free optimization; Bundle methods; Discrete gradient;
D O I
暂无
中图分类号
学科分类号
摘要
We study a generalization of the nonderivative discrete gradient method of Bagirov et al. for minimizing a locally Lipschitz function f on ℝn. We strengthen the existing convergence result for this method by showing that it either drives the f-values to −∞ or each of its cluster points is Clarke stationary for f, without requiring the compactness of the level sets of f. Our generalization is an approximate bundle method, which also subsumes the secant method of Bagirov et al.
引用
收藏
页码:69 / 75
页数:6
相关论文
共 50 条
  • [21] Discrete gradient method:: Derivative-free method for nonsmooth optimization
    Bagirov, A. M.
    Karasoezen, B.
    Sezer, M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) : 317 - 334
  • [22] Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization
    A. M. Bagirov
    B. Karasözen
    M. Sezer
    Journal of Optimization Theory and Applications, 2008, 137 : 317 - 334
  • [23] Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [24] Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization∗
    Li, Zhize
    Li, Jian
    Journal of Machine Learning Research, 2022, 23
  • [25] Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    arXiv, 2022,
  • [26] IMPROVED CONVERGENCE ANALYSIS OF MIXED SECANT METHODS FOR PERTURBED SUBANALYTIC VARIATIONAL INCLUSIONS
    Argyros, Ioannis K.
    Gonzalez, Daniel
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [27] Convergence analysis of the secant type methods
    Chen, Jinhai
    Shen, Zuhe
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 514 - 524
  • [28] A UNIFIED APPROACH TO GLOBAL CONVERGENCE OF TRUST REGION METHODS FOR NONSMOOTH OPTIMIZATION
    DENNIS, JE
    LI, SBB
    TAPIA, RA
    MATHEMATICAL PROGRAMMING, 1995, 68 (03) : 319 - 346
  • [29] A general approach to convergence properties of some methods for nonsmooth convex optimization
    Birge, JR
    Qi, L
    Wei, Z
    APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02): : 141 - 158
  • [30] A General Approach to Convergence Properties of Some Methods for Nonsmooth Convex Optimization
    J. R. Birge
    L. Qi
    Z. Wei
    Applied Mathematics and Optimization, 1998, 38 : 141 - 158