Global surfaces of section in non-regular convex energy levels of Hamiltonian systems

被引:0
|
作者
C. Grotta-Ragazzo
Pedro A. S. Salomão
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
来源
Mathematische Zeitschrift | 2007年 / 255卷
关键词
Hamiltonian systems; Global surface of section; Convexity; Saddle-center; Two-degrees of freedom;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the existence of global sections of disk-type in non-regular and strictly convex energy levels of integrable and near-integrable Hamiltonian systems with two degrees of freedom. This extends a result of (Hofer et al. in Ann. Math.(2) 148(1):197–289, 1998) where the same statement is true provided the energy level is regular.
引用
收藏
页码:323 / 334
页数:11
相关论文
共 50 条
  • [21] Maximum Entropy Rate of Markov Sources for Systems With Non-regular Constraints
    Boecherer, G.
    da Rocha, V. C., Jr.
    Pimentel, C.
    Mathar, R.
    2008 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, VOLS 1-3, 2008, : 1267 - +
  • [22] Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces
    Boughariou, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 603 - 616
  • [23] Estimating physical activity levels for regular and non-regular bike share users in Charleston, South Carolina
    Hughey, S. Morgan
    Leen, Katie
    Marshall, Alura
    Adams, J. D.
    Bornstein, Daniel
    Brown, Kweku
    Davis, William J.
    JOURNAL OF TRANSPORT & HEALTH, 2023, 31
  • [25] Differences in wage-determination systems between regular and non-regular employment in a Kaleckian model
    Sonoda, Ryunosuke
    Sasaki, Hiroaki
    REVIEW OF KEYNESIAN ECONOMICS, 2019, 7 (03) : 341 - 360
  • [27] TWT-O based on non-regular corrugated waeguide with rectangular cross-section
    Kurayev, AA
    Sinitsyn, AK
    Vasilevsky, PN
    11TH INTERNATIONAL CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY, CONFERENCE PROCEEDINGS, 2001, : 180 - 181
  • [28] Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line
    Liang, Feng
    Romanovski, Valery G.
    Zhang, Daoxiang
    CHAOS SOLITONS & FRACTALS, 2018, 111 : 18 - 34
  • [29] GLOBAL SURFACES OF SECTION FOR DYNAMICALLY CONVEX REEB FLOWS ON LENS SPACES
    Schneider, A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (04) : 2775 - 2803
  • [30] Global surfaces of section with positive genus for dynamically convex Reeb flows
    Hryniewicz, Umberto L.
    Salomao, Pedro A. S.
    Siefring, Richard
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (02)