Atomic characterizations of variable Hardy spaces on domains and their applications

被引:0
|
作者
Xiong Liu
机构
[1] Lanzhou University,School of Mathematics and Statistics
关键词
Variable Hardy space; Atom; Maximal function; Variable BMO space; Duality; Domain; 42B30; 42B25; 46A20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} be a proper open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} and p(·):Ω→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\varOmega \rightarrow (0,\infty )$$\end{document} a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the variable Hardy space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} by the radial maximal function and then characterize the space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} via grand maximal functions and atoms. Moreover, the author introduces the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space BMOp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega )$$\end{document} and the variable Hölder space Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. As applications of atomic characterizations of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}, the author shows that Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} is the dual space of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}. In particular, when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a bounded Lipschitz domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, the author further obtains Hp(·)(Ω)=Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )=H^{p(\cdot )}_{r}(\varOmega )$$\end{document}, BMOp(·)(Ω)=BMOzp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega ) =\rm {BMO}^{p(\cdot )}_z(\varOmega )$$\end{document} and Λp(·),q,0(Ω)=Λzp(·),q,0(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,0}(\varOmega )=\varLambda ^{p(\cdot ),\,q,\,0}_z(\varOmega )$$\end{document} with equivalent (quasi-)norm. Here the variable Hardy space Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}_{r}(\varOmega )$$\end{document} is defined via restricting arbitrary elements of Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, BMOzp(·)(Ω):={f∈BMOp(·)(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}_z(\varOmega ):=\{f\in \rm {BMO}^{p(\cdot )}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document} and Λzp(·),q,d(Ω):={f∈Λp(·),q,d(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}_z(\varOmega ): =\{f\in \varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document}, where Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document}, BMOp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} and Λp(·),q,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n)$$\end{document}, respectively, denote the variable Hardy space, the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space and the variable Hölder space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, and Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\varOmega }}$$\end{document} denotes the closure of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. The above results extend the main results in Miyachi (Studia Math 95:205–228, 1990) to the case of variable exponents.
引用
收藏
相关论文
共 50 条
  • [31] Characterizations of variable exponent Hardy spaces via Riesz transforms
    Yang, Dachun
    Zhuo, Ciqiang
    Nakai, Eiichi
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 245 - 270
  • [32] Equivalent characterizations of Hardy spaces with variable exponent via wavelets
    Fu, Xing
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 737 - 759
  • [33] Intrinsic Square Function Characterizations of Variable Weak Hardy Spaces
    Yan, Xianjie
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01): : 43 - 62
  • [34] Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents
    Ciqiang Zhuo
    Dachun Yang
    Yiyu Liang
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1541 - 1577
  • [35] Equivalent characterizations of Hardy spaces with variable exponent via wavelets
    Xing Fu
    Frontiers of Mathematics in China, 2019, 14 : 737 - 759
  • [36] Characterizations of Variable Martingale Hardy Spaces Via Maximal Functions
    Weisz Ferenc
    Fractional Calculus and Applied Analysis, 2021, 24 : 393 - 420
  • [37] Characterizations of variable exponent Hardy spaces via Riesz transforms
    Dachun Yang
    Ciqiang Zhuo
    Eiichi Nakai
    Revista Matemática Complutense, 2016, 29 : 245 - 270
  • [38] Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents
    Zhuo, Ciqiang
    Yang, Dachun
    Liang, Yiyu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1541 - 1577
  • [39] Real-variable characterizations of local Hardy spaces on spaces of homogeneous type
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (05) : 900 - 955