Transcendency of some constants related to integer sequences of polynomial iterations

被引:0
|
作者
Artūras Dubickas
机构
[1] Vilnius University,Institute of Mathematics, Department of Mathematics and Informatics
来源
The Ramanujan Journal | 2022年 / 57卷
关键词
Transcendental number; Polynomial recursion; Pisot unit; 11J81; 11B37; 11R06;
D O I
暂无
中图分类号
学科分类号
摘要
Let P(x)=a0xd+a1xd-1+⋯+ad∈Q[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(x)=a_0x^d+a_1x^{d-1}+\cdots +a_d \in {{\mathbb {Q}}}[x]$$\end{document} be a polynomial of degree d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document}, and let xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n$$\end{document}, n=0,1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0,1,2,\ldots $$\end{document}, be a sequence of integers satisfying xn+1=P(xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=P(x_n)$$\end{document} for n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 0$$\end{document} and xn→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n \rightarrow \infty $$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}. Then, by a recent result of Wagner and Ziegler, α=limn→∞xnd-n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\lim _{n\rightarrow \infty } x_n^{d^{-n}}>1$$\end{document} is either an integer or an irrational number, and xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n$$\end{document} is approximately a0-1/(d-1)αdn-a1/(da0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_0^{-1/(d-1)} \alpha ^{d^n}-a_1/(da_0)$$\end{document}. Under assumption a01/(d-1)∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_0^{1/(d-1)} \in {{\mathbb {Q}}}$$\end{document} on the leading coefficient a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_0$$\end{document} of P, we completely characterize all the cases when the limit α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is an algebraic number. Our results imply that α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} can be an integer, a quadratic Pisot unit with α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{-1}$$\end{document} being its conjugate over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document}, or a transcendental number. In most cases α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is transcendental. For each d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document} all the polynomials P of degree d for which α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is an integer or a quadratic Pisot unit are described explicitly. The main theorem implies that several constants related to sequences that appear in a paper of Aho and Sloane and in the online Encyclopedia of Integer Sequences are transcendental.
引用
收藏
页码:569 / 581
页数:12
相关论文
共 50 条
  • [21] Positive integer solutions of some Diophantine equations in terms of integer sequences
    Keskin, Refik
    Siar, Zafer
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 181 - 194
  • [22] A Catalan Transform and Related Transformations on Integer Sequences
    Barry, Paul
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (04)
  • [23] Two integer sequences related to Catalan numbers
    Lassalle, Michel
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (04) : 923 - 935
  • [24] Polyhedra related to integer-convex polynomial systems
    Michaels, D
    Weismantel, R
    MATHEMATICAL PROGRAMMING, 2006, 105 (2-3) : 215 - 232
  • [25] STRUCTURE OF MULTICORRELATION SEQUENCES WITH INTEGER PART POLYNOMIAL ITERATES ALONG PRIMES
    Koutsogiannis, Andreas
    Le, Anh N.
    Moreira, Joel
    Richter, Florian K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) : 209 - 216
  • [26] Polyhedra related to integer-convex polynomial systems
    Dennis Michaels
    Robert Weismantel
    Mathematical Programming, 2006, 105 : 215 - 232
  • [27] Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences
    Razon, Ofir
    Harris, Yoav
    Gottlieb, Shahar
    Carmon, Dan
    David, Ofir
    Kaminer, Ido
    Proceedings of Machine Learning Research, 2023, 202 : 28809 - 28842
  • [28] MULTIPLEXED SEQUENCES - SOME PROPERTIES OF THE MINIMUM POLYNOMIAL
    JENNINGS, SM
    LECTURE NOTES IN COMPUTER SCIENCE, 1983, 149 : 189 - 206
  • [29] On some Tutte polynomial sequences in the square lattice
    Mani, Arun P.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (02) : 436 - 453
  • [30] Some simultaneous iterations for finding all zeros of a polynomial with high order convergence
    Zheng, SM
    Sun, FY
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) : 233 - 240