Stability and convergence of the space fractional variable-order Schrödinger equation

被引:0
|
作者
Abdon Atangana
Alain H Cloot
机构
[1] University of the Free State,Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences
[2] University of the Free State,Department of Mathematics and Applied Mathematics
关键词
Schrödinger equation; variable-order derivative; Crank-Nicholson scheme; convergence; stability;
D O I
暂无
中图分类号
学科分类号
摘要
The space fractional Schrödinger equation was further extended to the concept of space fractional variable-order derivative. The generalized equation is very difficult to handle analytically. We solved the generalized equation numerically via the Crank-Nicholson scheme. The stability and the convergence of the space fractional variable-order Schrödinger equation were presented in detail.
引用
收藏
相关论文
共 50 条
  • [21] A space–time DG method for the Schrödinger equation with variable potential
    Sergio Gómez
    Andrea Moiola
    Advances in Computational Mathematics, 2024, 50
  • [22] Analytic Solution of the Fractional Order Non-linear Schrödinger Equation and the Fractional Order Klein Gordon Equation
    Md Ramjan Ali
    Uttam Ghosh
    Susmita Sarkar
    Shantanu Das
    Differential Equations and Dynamical Systems, 2022, 30 : 499 - 512
  • [23] A Meshless Method for the Variable-Order Time Fractional Telegraph Equation
    Gharian, D.
    Ghaini, F. M. Maalek
    Heydari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (03) : 35 - 56
  • [24] Wellposedness and regularity of a nonlinear variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 29 - 35
  • [25] Local modification and analysis of a variable-order fractional wave equation
    Li, Shuyu
    Wang, Hong
    Jia, Jinhong
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [26] Numerical studies for the variable-order nonlinear fractional wave equation
    N. H. Sweilam
    M. M. Khader
    H. M. Almarwm
    Fractional Calculus and Applied Analysis, 2012, 15 : 669 - 683
  • [27] Numerical studies for the variable-order nonlinear fractional wave equation
    Sweilam, N. H.
    Khader, M. M.
    Almarwm, H. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 669 - 683
  • [28] An approximate approach for the generalized variable-order fractional pantograph equation
    Avazzadeh, Z.
    Heydari, M. H.
    Mahmoudi, Mohammad Reza
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2347 - 2354
  • [29] Analysis of a nonlinear variable-order fractional stochastic differential equation
    Zheng, Xiangcheng
    Zhang, Zhongqiang
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2020, 107 (107)
  • [30] The concentration of solutions to a fractional Schrödinger equation
    Qihan He
    Wei Long
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67