The Evidential Reasoning Approach to Medical Diagnosis using Intuitionistic Fuzzy Dempster-Shafer Theory

被引:25
|
作者
Wang, Yanni [1 ]
Dai, Yaping [1 ]
Chen, Yu-wang [2 ]
Meng, Fancheng [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Haidian Distric, Peoples R China
[2] Manchester Business Sch, Decis & Cognit Sci Res Ctr, Manchester M15 6PB, Lancs, England
关键词
medical diagnosis; inclusion measure; Dempster-Shafer theory; uncertainty; evidential reasoning; Fuzzy sets; ATTRIBUTE DECISION-ANALYSIS; BASE INFERENCE METHODOLOGY; FRAMEWORK; UNCERTAINTY; SETS;
D O I
10.1080/18756891.2014.964009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For medical diagnosis, fuzzy Dempster-Shafer theory is extended to model domain knowledge under probabilistic and fuzzy uncertainty. However, there are some information loss using discrete fuzzy sets and traditional matching degree method. This study aims to provide a new evidential structure to reduce information loss. This paper proposes a new intuitionistic fuzzy evidential reasoning (IFER) approach which combines intuitionistic trapezoidal fuzzy numbers and inclusion measure to improve the accuracy of representation and reasoning. The proposed approach has been validated by a stroke diagnosis. It is shown that the IFER approach leads to more accurate results.
引用
收藏
页码:75 / 94
页数:20
相关论文
共 50 条
  • [41] AN EXERCISE IN DEMPSTER-SHAFER THEORY
    HAJEK, P
    HARMANEC, D
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1992, 20 (02) : 137 - 142
  • [42] A Novel Fuzzy Approach for Combining Uncertain Conflict Evidences in the Dempster-Shafer Theory
    An, Jiyao
    Hu, Meng
    Fu, Li
    Zhan, Jiawei
    IEEE ACCESS, 2019, 7 : 7481 - 7501
  • [43] A clash in Dempster-Shafer theory
    Xiong, W
    Ju, S
    Luo, X
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 793 - 796
  • [44] Geospatial Modeling Using Dempster-Shafer Theory
    Elmore, Paul A.
    Petry, Frederick E.
    Yager, Ronald R.
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (06) : 1551 - 1561
  • [45] Sensor fusion using Dempster-Shafer theory
    Wu, HD
    Siegel, M
    Stiefelhagen, R
    Yang, J
    IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 7 - 12
  • [46] Object Classification Using Dempster-Shafer Theory
    Harasymowicz-Boggio, B.
    Siemiatkowska, B.
    MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 559 - 565
  • [47] A new method to rank fuzzy numbers using Dempster-Shafer theory with fuzzy targets
    Chai, Kok Chin
    Tay, Kai Meng
    Lim, Chee Peng
    INFORMATION SCIENCES, 2016, 346 : 302 - 317
  • [48] Fundamentals of the Dempster-Shafer Theory
    Peri, Joseph S. J.
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XXI, 2012, 8392
  • [49] Categorification of the Dempster-Shafer Theory
    Peri, Joseph S. J.
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXIV, 2015, 9474
  • [50] Dempster-Shafer Fusion of Evidential Pairwise Markov Chains
    Boudaren, Mohamed El Yazid
    Pieczynski, Wojciech
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (06) : 1598 - 1610