Exogenous Glutathione Modulates Salinity Tolerance of Soybean [Glycine max (L.) Merrill] at Reproductive Stage

被引:0
|
作者
Soleh Akram
Md. Nurealam Siddiqui
B. M. Nahid Hussain
Md. Abdullah Al Bari
Mohammad Golam Mostofa
Mohammad Anwar Hossain
Lam-Son Phan Tran
机构
[1] Bangladesh Agricultural University,Department of Genetics and Plant Breeding
[2] Bangabandhu Sheikh Mujibur Rahman Agricultural University,Department of Biochemistry and Molecular Biology
[3] Ton Duc Thang University,Plant Abiotic Stress Research Group & Faculty of Applied Sciences
[4] RIKEN Center for Sustainable Resource Science,Signaling Pathway Research Unit
来源
关键词
Glutathione; Oxidative stress; Reproductive stage; Salt tolerance; Soybean; Yield;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we evaluated salt stress responses of 11 soybean genotypes and explored the protective roles of exogenous glutathione (GSH) against salt toxicity by assessing various biochemical and yield-attributing parameters. Exposure of the soybean genotypes to salt stress at the reproductive (R1) stage significantly decreased their yields by down-regulating the yield-contributing parameters as compared with unstressed controls. The highest decrease was found in number of seeds plant−1, yield plant−1, and number of pods plant−1, whereas the lowest decrease was recorded in number of seeds pod−1. Exogenous GSH was found to be effective in improving salinity tolerance, and the highest positive effects of GSH were recorded in terms of yield plant−1, number of seeds plant−1 and number of pods plant−1, whereas its lowest effect was observed with respect to the 100-seed weight. Cluster analysis of the genotypes based on yield-contributing and yield data revealed different levels of salt tolerance. Notably, BINA-01 and -02, and BINA-04 were recognized as the highest and lowest salt-tolerant genotypes, respectively. Furthermore, exogenous GSH alleviated oxidative stress in the representative contrasting genotypes at the vegetative (V3) stage by decreasing salt-induced accumulation of malondialdehyde and hydrogen peroxide. Taken together, our findings revealed that exogenous GSH application can minimize oxidative stress and contribute to the improvement of yield-contributing parameters, leading to improved yield in soybean genotypes under salt stress. Further investigations on molecular aspects will enable us to gain an in-depth understanding of how exogenous GSH can improve salinity tolerance in soybean, particularly at reproductive stage, to discover relevant pathways for biotechnological manipulation.
引用
收藏
页码:877 / 888
页数:11
相关论文
共 50 条
  • [41] Gene Action For Yield and its Components in Soybean (Glycine max (L.) Merrill)
    Datt, Shiv
    Noren, S. K.
    Bhadana, V. P.
    Sharma, P. R.
    VEGETOS, 2011, 24 (01): : 89 - 92
  • [42] Correlation Studies of Quantitative and Qualitative Traits in Soybean (Glycine max (L.) Merrill)
    Vatsa, V. K.
    Singh, Minakshi
    VEGETOS, 2008, 21 (02): : 129 - 135
  • [43] Response of soybean [Glycine max L. (Merrill)] to starter nitrogen in Western Ethiopia
    Dabessa, Alemayehu
    Arega, Adane
    Takele, Feyera
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2023, 69 (15) : 3690 - 3704
  • [44] Isolation and culture of soybean (Glycine max L. Merrill) microspores and pollen grains
    Rodrigues, Lia Rosane
    Forte, Bianca de Camargo
    Bodanese-Zanettini, Maria Helena
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2006, 49 (04) : 537 - 545
  • [45] Genotype by environment effects on promiscuous nodulation in soybean (Glycine max L. Merrill)
    Agoyi E.E.
    Odong T.L.
    Tumuhairwe J.B.
    Chigeza G.
    Diers B.W.
    Tukamuhabwa P.
    Agriculture & Food Security, 6 (1):
  • [46] CHEMICAL COMPOSITION AND SOLUBLE IRON CONTENT IN SOYBEAN [Glycine max (L.) Merrill]
    Paiva Yamada, Leticia Tamie
    Piccolo Barcelos, Maria de Fatima
    de Sousa, Raimundo Vicente
    de Lima, Andrelisa Lina
    CIENCIA E AGROTECNOLOGIA, 2003, 27 (02): : 406 - 413
  • [47] EFFECT OF PHOSPHORUS NUTRITION AND AGROCHEMICALS ON THE PRODUCTIVITY OF SOYBEAN [GLYCINE MAX (L.) MERRILL]
    Kanojia, Y.
    Sharma, D. D.
    LEGUME RESEARCH, 2008, 31 (01) : 51 - 53
  • [48] GENETIC ANALYSIS OF YIELD AND ITS COMPONENTS IN SOYBEAN [Glycine max (L.) Merrill]
    Adsul, A. T.
    Chimote, V. P.
    Deshmukh, M. P.
    Thakare, D. S.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2016, 48 (03): : 247 - 257
  • [49] Physiological responses of soybean (Glycine max (L.) Merrill) cultivars to copper excess
    Schwalbert, Raissa
    Silva, Lincon O. S.
    Schwalbert, Rai A.
    Tarouco, Camila P.
    Fernandes, Gillian S.
    Marques, Anderson C. R.
    Costa, Camila C.
    Hammerschmitt, Rodrigo K.
    Brunetto, Gustavo
    Nicoloso, Fernando T.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2019, 91 (04):
  • [50] Genetic Parameters of Soybean [Glycine max (L.)] Genotypes Tolerant to Salinity
    Putri, Pratanti H.
    Susanto, Gatut W. A.
    Sundari, Titik
    Soehendi, Rudy
    Trustinah
    Indriani, Febria C.
    Wahyuni, Tinuk S.
    Mejaya, Made J.
    LEGUME RESEARCH, 2022, 45 (06) : 695 - 699