The Equivalence of Three Types of Error Bounds for Weakly and Approximately Convex Functions

被引:0
|
作者
Sixuan Bai
Minghua Li
Chengwu Lu
Daoli Zhu
Sien Deng
机构
[1] Chongqing Jiaotong University,College of Mathematics and Statistics
[2] Chongqing University of Arts and Sciences,The Key Laboratory of Complex Data Analysis and Artificial Intelligence of Chongqing
[3] Antai College of Economics and Management and Sino-US Global Logistics Institute,Department of Mathematical Sciences
[4] Northern Illinois University,undefined
关键词
Weak sharp minima; Level-set subdifferential error bounds; Łojasiewicz inequalities; Lower-order regularization problems; 65K10; 90C26; 90C31;
D O I
暂无
中图分类号
学科分类号
摘要
We start by establishing the equivalence of three types of error bounds: weak sharp minima, level-set subdifferential error bounds and Łojasiewicz (for short Ł) inequalities for weakly convex functions with exponent α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,1]$$\end{document} and approximately convex functions. Then we apply these equivalence results to a class of nonconvex optimization problems, whose objective functions are the sum of a convex function and a composite function with a locally Lipschitz function and a smooth vector-valued function. Finally, applying a characterization for lower-order regularization problems, we show that the level-set subdifferential error bound with exponent 1 and the Ł inequality with exponent 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document} hold at a local minimum point.
引用
收藏
页码:220 / 245
页数:25
相关论文
共 50 条
  • [31] On some error bounds of Maclaurin?s formula for convex functions in q-calculus
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Soontharanon, Jarunee
    FILOMAT, 2023, 37 (18) : 5883 - 5894
  • [32] From error bounds to the complexity of first-order descent methods for convex functions
    Jérôme Bolte
    Trong Phong Nguyen
    Juan Peypouquet
    Bruce W. Suter
    Mathematical Programming, 2017, 165 : 471 - 507
  • [33] From error bounds to the complexity of first-order descent methods for convex functions
    Bolte, Jerome
    Trong Phong Nguyen
    Peypouquet, Juan
    Suter, Bruce W.
    MATHEMATICAL PROGRAMMING, 2017, 165 (02) : 471 - 507
  • [34] On the equivalence of some conditions for convex functions
    Tikhonov S.Yu.
    Ukrainian Mathematical Journal, 2005, 57 (3) : 517 - 522
  • [35] WEAKLY CLOSE-TO-CONVEX FUNCTIONS
    LIVINGSTON, AE
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1988, 18 (04) : 719 - 732
  • [36] Differentiability of approximately convex, semiconcave and strongly paraconvex functions
    Zajicek, Ludek
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (01) : 1 - 15
  • [37] In Asplund spaces, approximately convex functions and regular functions are generically differentiable
    Huynh Van Ngai
    Penot, Jean-Paul
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (06): : 1477 - 1492
  • [38] ERROR BOUNDS IN APPROXIMATION OF FUNCTIONS
    SAHNEY, BN
    RAO, VVG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A315 - A315
  • [39] Bounds Related to Convex Univalent Functions
    Holland, Finbarr
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (07): : 665 - 666
  • [40] Global error bounds for piecewise convex polynomials
    Guoyin Li
    Mathematical Programming, 2013, 137 : 37 - 64