Convex domains and K-spectral sets

被引:0
|
作者
Catalin Badea
Michel Crouzeix
Bernard Delyon
机构
[1] UMR CNRS no. 8524,Département de Mathématiques
[2] Université de Lille I,Institut de Recherche Mathématique de Rennes
[3] UMR CNRS no. 6625,undefined
[4] Université de Rennes 1,undefined
来源
Mathematische Zeitschrift | 2006年 / 252卷
关键词
Hilbert Space; Space Operator; Convex Domain; Numerical Range; Open Convex;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be an open convex domain of [inline-graphic not available: see fulltext]. We study constants K such that Ω is K-spectral or complete K-spectral for each continuous linear Hilbert space operator with numerical range included in Ω. Several approaches are discussed.
引用
收藏
页码:345 / 365
页数:20
相关论文
共 50 条
  • [21] Nearly convex sets: fine properties and domains or ranges of subdifferentials of convex functions
    Sarah M. Moffat
    Walaa M. Moursi
    Xianfu Wang
    Mathematical Programming, 2016, 160 : 193 - 223
  • [22] Nearly convex sets: fine properties and domains or ranges of subdifferentials of convex functions
    Moffat, Sarah M.
    Moursi, Walaa M.
    Wang, Xianfu
    MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) : 193 - 223
  • [23] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88
  • [24] X mode Doppler reflectometry k-spectral measurements in ASDEX Upgrade: experiments and simulations
    Lechte, C.
    Conway, G. D.
    Goerler, T.
    Troester-Schmid, C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (07)
  • [25] Two-mode K-spectral centroid analysis for studying multivariate longitudinal profiles
    Heylen, Joke
    Van Mechelen, Iven
    Fried, Eiko I.
    Ceulemans, Eva
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 194 - 206
  • [26] Inequalities for quermassintegrals on k-convex domains
    Chang, Sun-Yung Alice
    Wang, Yi
    ADVANCES IN MATHEMATICS, 2013, 248 : 335 - 377
  • [27] Spectral gap for the Cauchy process on convex, symmetric domains
    Banuelos, Rodrigo
    Kulczycki, Tadeusz
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) : 1841 - 1878
  • [29] SPECTRAL-SYNTHESIS ON SYSTEMS OF UNBOUNDED CONVEX DOMAINS
    KRASICKOVTERNOVSKII, IF
    MATHEMATICS OF THE USSR-SBORNIK, 1981, 39 (03): : 343 - 357
  • [30] The Fuglede spectral conjecture holds for convex planar domains
    Iosevich, A
    Katz, N
    Tao, T
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 559 - 569