An efficient scheme for the implementation of implicit Runge-Kutta methods

被引:0
|
作者
L. M. Skvortsov
机构
[1] Bauman State Technical University,
关键词
implicit Runge-Kutta methods; modified Newton’s iteration; starting values; stiffness;
D O I
暂无
中图分类号
学科分类号
摘要
A scheme is proposed for solving nonlinear algebraic equations arising in the implementation of the implicit Runge-Kutta methods. In contrast to the available schemes, not only the starting values of the variables but also those of the derivatives are predicted. This makes it possible to reduce the number of evaluations of the function (the right-hand side) at each implicit stage without significantly reducing the accuracy of integration.
引用
收藏
页码:2007 / 2017
页数:10
相关论文
共 50 条
  • [31] Ramifications of Implicit Runge-Kutta Time Integration Scheme
    Rossow, Cord-Christian
    NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS X, 2016, 132 : 547 - 560
  • [32] Implicit extensions of an explicit multirate Runge-Kutta scheme
    Constantinescu, Emil M.
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [33] Efficient implementation of symplectic implicit Runge-Kutta schemes with simplified Newton iterations
    Antonana, Mikel
    Makazaga, Joseba
    Murua, Ander
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 63 - 86
  • [34] Efficient implementation of symplectic implicit Runge-Kutta schemes with simplified Newton iterations
    Mikel Antoñana
    Joseba Makazaga
    Ander Murua
    Numerical Algorithms, 2018, 78 : 63 - 86
  • [35] DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ADDITIVE SEMI-IMPLICIT RUNGE-KUTTA METHODS
    Higueras, Inmaculada
    Miguel Mantas, Jose
    Roldan, Teo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2131 - 2150
  • [36] Matrix-Free Iterative Processes for Implementation of Implicit Runge-Kutta Methods
    Faleichik, Boris
    Bondar, Ivan
    FINITE DIFFERENCE METHODS, THEORY AND APPLICATIONS, 2015, 9045 : 177 - 184
  • [37] IMPLICIT RUNGE-KUTTA PROCESSES
    BUTCHER, JC
    MATHEMATICS OF COMPUTATION, 1964, 18 (85) : 50 - &
  • [38] On the generation of mono-implicit Runge-Kutta-Nystrom methods by mono-implicit Runge-Kutta methods
    De Meyer, H
    Vanden Berghe, G
    Van Hecke, T
    Van Daele, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) : 147 - 167
  • [39] IMPLICIT RUNGE-KUTTA FORMULAS
    FILIPPI, S
    SOMMER, D
    ELECTRONISCHE DATENVERARBEITUNG, 1968, 10 (03): : 113 - &
  • [40] On implicit Runge-Kutta methods with high stage order
    Bendtsen, C
    BIT, 1997, 37 (01): : 221 - 226