Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups

被引:0
|
作者
V. S. Monakhov
A. A. Trofimuk
机构
[1] Francisk Skorina Gomel State University,
[2] Pushkin Brest State University,undefined
来源
关键词
-supersoluble group; normally embedded subgroup; maximal subgroup; Sylow subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a subgroup of a Sylow subgroup of a finite group G. If P is a Sylow subgroup of some normal subgroup of G then P is called normally embedded in G. We establish tests for a finite group G to be p-supersoluble provided that every maximal subgroup of a Sylow p-subgroup of X is normally embedded in G. We study the cases when X is a normal subgroup of G, X = Op',p(H), and X = F*(H) where H is a normal subgroup of G.
引用
收藏
页码:922 / 930
页数:8
相关论文
共 50 条
  • [21] On nearly CAP-embedded second maximal subgroups of Sylow p-subgroups of finite groups
    Zhang, Mingmei
    Huang, Yuxi
    Xu, Yong
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 604 - 612
  • [22] Maximal and Sylow subgroups of solvable finite groups
    Monakhov, VS
    Gribovskaya, EE
    MATHEMATICAL NOTES, 2001, 70 (3-4) : 545 - 552
  • [23] Maximal and Sylow Subgroups of Solvable Finite Groups
    V. S. Monakhov
    E. E. Gribovskaya
    Mathematical Notes, 2001, 70 : 545 - 552
  • [24] X-permutable maximal subgroups of Sylow subgroups of finite groups
    Guo W.
    Shum K.P.
    Skiba A.N.
    Ukrainian Mathematical Journal, 2006, 58 (10) : 1471 - 1480
  • [25] On the maximal overgroups of Sylow subgroups of finite groups
    Baumeister, Barbara
    Burness, Timothy C.
    Guralnick, Robert M.
    -Viet, Hung P. Tong
    ADVANCES IN MATHEMATICS, 2024, 444
  • [26] ON M-PERMUTABLE MAXIMAL SUBGROUPS OF SYLOW SUBGROUPS OF FINITE GROUPS
    Long Miao
    Lempken, Wolfgang
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3649 - 3659
  • [27] ON σ-SUBNORMALITY OF SYLOW SUBGROUPS IN A FINITE GROUP
    Kamornikov, S. F.
    Tyutyanov, V. N.
    Shemetkova, O. L.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 230 - 238
  • [28] Abelian Sylow subgroups in a finite group
    Navarro, Gabriel
    Pham Huu Tiep
    JOURNAL OF ALGEBRA, 2014, 398 : 519 - 526
  • [29] THE SYLOW SUBGROUPS OF A FINITE REDUCTIVE GROUP
    Enguehard, Michel
    Michel, Jean
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2018, 13 (02): : 227 - 247
  • [30] Finite groups with normally embedded subgroups
    Shen, Zhencai
    Li, Shirong
    Shi, Wujie
    JOURNAL OF GROUP THEORY, 2010, 13 (02) : 257 - 265