Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space

被引:0
|
作者
Cícero P. Aquino
Henrique F. de Lima
Eraldo A. Lima
机构
[1] Universidade Federal do Piauí,Departamento de Matemática
[2] Universidade Federal de Campina Grande,Departamento de Matemática
[3] Universidade Federal do Ceará,Departamento de Matemática
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Primary 53C42; Secondary 53B30; 53C50; Lorentzian product spaces; Complete spacelike hypersurfaces; Mean curvature; Normal hyperbolic angle; Entire vertical graphs;
D O I
暂无
中图分类号
学科分类号
摘要
We use Bochner’s formula jointly with the generalized maximum principle of Omori-Yau and an extension of Liouville’s theorem due to Yau in order to show that a complete spacelike hypersurface Σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{n}}$$\end{document} immersed with constant mean curvature in a Lorentzian product space M¯n+1=-R×Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}^{n+1}=-{\mathbb{R}}{\times}M^{n}}$$\end{document}, whose fiber Mn has nonnegative sectional curvature, must be a slice, provided that Σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{n}}$$\end{document} is bounded away from the future (or past) infinity of M¯n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}^{n+1}}$$\end{document} and that its normal hyperbolic angle is bounded. We also study the rigidity of entire vertical graphs with constant mean curvature in such an ambient space.
引用
收藏
页码:577 / 587
页数:10
相关论文
共 50 条
  • [31] Umbilicity of Complete LW Spacelike Hypersurfaces Immersed in Certain Einstein Spacetimes
    Colares, A. Gervasio
    de Lima, Henrique F.
    Rocha, Lucas S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (07)
  • [32] CURVATURE ESTIMATES OF A SPACELIKE GRAPH IN A LORENTZIAN PRODUCT SPACE
    Kim, Daehwan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 499 - 518
  • [33] On the curvatures of complete spacelike hypersurfaces in de Sitter space
    Aledo, JA
    Alías, LJ
    GEOMETRIAE DEDICATA, 2000, 80 (1-3) : 51 - 58
  • [34] On the Curvatures of Complete Spacelike Hypersurfaces in de Sitter Space
    Juan A. Aledo
    Luis J. Alías
    Geometriae Dedicata, 2000, 80 : 51 - 58
  • [35] On the angle of complete CMC hypersurfaces in Riemannian product spaces
    Aquino, Cicero P.
    de Lima, Henrique F.
    Lima, Eraldo A., Jr.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 139 - 148
  • [36] Spacelike hypersurfaces of constant mean curvature with free boundary in Lorentzian space forms
    Pastor, JA
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (09) : 1921 - 1934
  • [37] On Complete Spacelike Hypersurfaces in a Semi-Riemannian Warped Product
    Wang, Yaning
    Liu, Ximin
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [38] On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime
    Alias, Luis J.
    Colares, Antonio Gervasio
    de Lima, Henrique F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02): : 195 - 217
  • [39] On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime
    Luis J. Alías
    Antonio Gervásio Colares
    Henrique F. de Lima
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 195 - 217
  • [40] On the curvatures of bounded complete spacelike hypersurfaces in the Lorentz–Minkowski space
    Juan A. Aledo
    Luis J. Alías
    manuscripta mathematica, 2000, 101 : 401 - 413