In 1978 I. N. Herstein proved that a prime ring R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R$$\end{document} of characteristic not two with nonzero derivation d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d$$\end{document} satisfying d(x)d(y)=d(y)d(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d(x)d(y)=d(y)d(x)$$\end{document} for all x,y∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x,y\in R$$\end{document} is commutative, and in 1995 Bell and Daif showed that d(xy)=d(yx)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d(xy)=d(yx)$$\end{document} implies commutativity. We extend the Bell–Daif theorem to lattice-ordered prime rings with a positive derivation satisfying the property on a one-sided L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L$$\end{document}-ideal and interpret these conditions for higher derivations in prime d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d$$\end{document}-rings and in semiprime f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f$$\end{document}-rings. Our key tool is that every positive derivation nilpotent on a one-sided L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L$$\end{document}-ideal of a semiprime ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell $$\end{document}-ring is zero on that ideal.
机构:
Univ Houston Clear Lake, Dept Math, 2700 Bay Area Blvd, Houston, TX 77058 USAUniv Houston Clear Lake, Dept Math, 2700 Bay Area Blvd, Houston, TX 77058 USA
Ma, Jingjing
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS,
2017,
34
(02):
: 363
-
368
机构:
Department of Mathematics Faculty of science, King Abdul Aziz University, P.O. Box. 80203, JeddahDepartment of Mathematics Faculty of science, King Abdul Aziz University, P.O. Box. 80203, Jeddah
Ashraf M.
Rehman N.-U.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Aligarh Muslim University, AligarhDepartment of Mathematics Faculty of science, King Abdul Aziz University, P.O. Box. 80203, Jeddah
机构:
Univ Houston Clear Lake, Dept Math, 2700 Bay Area Blvd, Houston, TX 77058 USAUniv Houston Clear Lake, Dept Math, 2700 Bay Area Blvd, Houston, TX 77058 USA