Higher derivations and commutativity in lattice-ordered rings

被引:0
|
作者
S. Andima
H. Pajoohesh
机构
[1] Long Island University-C.W. Post Campus,Department of Mathematics
[2] Medgar Evers College of CUNY,Department of Mathematics
来源
Positivity | 2014年 / 18卷
关键词
Derivation; Higher derivation; Lattice-ordered ring; -ring; -ring; Prime ring; Semiprime ring; 16N60; 13N15; 16U80; 06F25;
D O I
暂无
中图分类号
学科分类号
摘要
In 1978 I. N. Herstein proved that a prime ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} of characteristic not two with nonzero derivation d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} satisfying d(x)d(y)=d(y)d(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(x)d(y)=d(y)d(x)$$\end{document} for all x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in R$$\end{document} is commutative, and in 1995 Bell and Daif showed that d(xy)=d(yx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(xy)=d(yx)$$\end{document} implies commutativity. We extend the Bell–Daif theorem to lattice-ordered prime rings with a positive derivation satisfying the property on a one-sided L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-ideal and interpret these conditions for higher derivations in prime d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-rings and in semiprime f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-rings. Our key tool is that every positive derivation nilpotent on a one-sided L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-ideal of a semiprime ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-ring is zero on that ideal.
引用
收藏
页码:603 / 617
页数:14
相关论文
共 50 条
  • [21] Recognition of Lattice-Ordered Matrix Rings
    Jingjing Ma
    Order, 2013, 30 : 617 - 623
  • [22] Division Closed Lattice-Ordered Rings
    Ma, Jingjing
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2017, 34 (02): : 363 - 368
  • [23] A note on derivations of higher order and commutativity of prime rings
    Wong, TL
    ALGEBRA COLLOQUIUM, 2003, 10 (04) : 513 - 517
  • [24] DERIVATIONS AND COMMUTATIVITY OF RINGS
    CHUNG, LO
    LUH, J
    RICHOUX, AN
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 80 (01) : 77 - 89
  • [25] Commutativity of rings with derivations
    S. Andima
    H. Pajoohesh
    Acta Mathematica Hungarica, 2010, 128 : 1 - 14
  • [26] Commutativity of rings with derivations
    Andima, S.
    Pajoohesh, H.
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 1 - 14
  • [27] On Commutativity of Rings With Derivations
    Ashraf M.
    Rehman N.-U.
    Results in Mathematics, 2002, 42 (1-2) : 3 - 8
  • [28] Note on Lattice-ordered Rings with Positive Squares
    Sun, Yujiao
    Yang, Yichuan
    ALGEBRA COLLOQUIUM, 2013, 20 (03) : 417 - 420
  • [29] CONSTRUCTING LATTICE-ORDERED FIELDS AND DIVISION RINGS
    REDFIELD, RH
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 40 (03) : 365 - 369
  • [30] Characterizing division closed lattice-ordered rings
    Ma, Jingjing
    QUAESTIONES MATHEMATICAE, 2022, 45 (09) : 1343 - 1351