Novikov Commutator Algebras are Special

被引:0
|
作者
P. S. Kolesnikov
A. S. Panasenko
机构
[1] Sobolev Institute ofMathematics,
[2] pr. Akad. Koptyuga 4,undefined
[3] Novosibirsk State University,undefined
[4] ul. Pirogova 1,undefined
来源
Algebra and Logic | 2020年 / 58卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:538 / 539
页数:1
相关论文
共 50 条
  • [21] Underlying lie algebras of quadratic Novikov algebras
    Zhiqi Chen
    Czechoslovak Mathematical Journal, 2011, 61 : 323 - 328
  • [22] UNDERLYING LIE ALGEBRAS OF QUADRATIC NOVIKOV ALGEBRAS
    Chen, Zhiqi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (02) : 323 - 328
  • [23] On the realization of transitive Novikov algebras
    Bai, CM
    Meng, DJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (16): : 3363 - 3372
  • [24] Polynomial identities in Novikov algebras
    Vladimir Dotsenko
    Nurlan Ismailov
    Ualbai Umirbaev
    Mathematische Zeitschrift, 2023, 303
  • [25] Hom-Novikov algebras
    Yau, Donald
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (08)
  • [26] SIMPLE NOVIKOV ALGEBRAS WITH AN IDEMPOTENT
    OSBORN, JM
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (09) : 2729 - 2753
  • [27] On the solvability of graded Novikov algebras
    Umirbaev, Ualbai
    Zhelyabin, Viktor
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (07) : 1405 - 1418
  • [28] Quasiderivations and Quasicentroids of Novikov Algebras
    Zhou, Xin
    Sun, Bing
    Zhao, Xiaodong
    Chen, Liangyun
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (03) : 869 - 882
  • [29] Bilinear forms on Novikov algebras
    Bai, CM
    Meng, DJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (03) : 495 - 502
  • [30] Polynomial identities in Novikov algebras
    Dotsenko, Vladimir
    Ismailov, Nurlan
    Umirbaev, Ualbai
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (03)