A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space

被引:0
|
作者
Sadek Gala
机构
[1] University of Mostaganem,Department of Mathematics
关键词
quasi-geostrophic equations; logarithmical regularity criterion; Besov space; 35B65; 35Q35; 35Q86;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space B˙∞,∞−r(ℝ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)$$\end{document}. The result shows that if θ is a weak solutions satisfies ∫0T∥∇θ(⋅,s)∥B˙∞,∞−rαα−r1+ln(e+∥∇⊥θ(⋅,s)∥L2r)!ds<∞forsome0<r<αand0<α<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha } {{\alpha - r}}} }} {{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2} {r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$\end{document} then θ is regular at t = T. In view of the embedding L2r⊂M2rp⊂B˙∞,∞−r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}$$\end{document} with 2≤p<2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \leqslant p < \frac{2}{r}$$\end{document} and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31].
引用
收藏
页码:679 / 686
页数:7
相关论文
共 50 条
  • [31] GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS
    杨婉蓉
    酒全森
    ActaMathematicaScientia, 2014, 34 (06) : 1741 - 1748
  • [32] Regularity results for a class of generalized surface quasi-geostrophic equations
    Lazar, Omar
    Xue, Liutang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 200 - 250
  • [33] GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS
    Yang, Wanrong
    Jiu, Quansen
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) : 1741 - 1748
  • [34] Regularity Criteria for the Dissipative Quasi-Geostrophic Equations in Holder Spaces
    Dong, Hongjie
    Pavlovic, Natasa
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (03) : 801 - 812
  • [35] A logarithmically improved regularity criterion for the Navier-Stokes equations
    Liu, Qiao
    Zhao, Jihong
    Cui, Shangbin
    MONATSHEFTE FUR MATHEMATIK, 2012, 167 (3-4): : 503 - 509
  • [36] A logarithmically improved regularity criterion for the Boussinesq equations in a bounded domain
    Alghamdi, Ahmad M.
    Gala, Sadek
    Ragusa, Maria Alessandra
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (06):
  • [37] Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces
    Qian Zhang
    Yehua Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 53 - 70
  • [38] On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation
    Jihong Zhao
    Qiao Liu
    Chinese Annals of Mathematics, Series B, 2015, 36 : 947 - 956
  • [39] Global regularity for the supercritical dissipative quasi-geostrophic equation with large dispersive forcing
    Cannone, Marco
    Miao, Changxing
    Xue, Liutang
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 650 - 674
  • [40] On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces
    Dong, Hongjie
    Li, Dong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (11) : 2684 - 2702