Renormalization-group improved Higgs to two gluons decay rate

被引:0
|
作者
Gauhar Abbas
Astha Jain
Vartika Singh
Neelam Singh
机构
[1] Indian Institute of Technology (BHU),Department of Physics
来源
The European Physical Journal Plus | / 139卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the renormalization-group scale and scheme dependence of the H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow gg$$\end{document} decay rate at the order N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document}LO in the renormalization-group summed perturbative theory, which employs the summation of all renormalization-group accessible logarithms including the leading and subsequent four sub-leading logarithmic contributions to the full perturbative series expansion. Moreover, we study the higher-order behaviour of the H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow gg$$\end{document} decay width using the asymptotic Padé approximant method in four different renormalization schemes. Furthermore, the higher-order behaviour is independently investigated in the framework of the asymptotic Padé–Borel approximant method where generalized Borel-transform is used as an analytic continuation of the original perturbative expansion. The predictions of the asymptotic Padé–Borel approximant method are found to be in agreement with that of the asymptotic Padé approximant method. Finally, we provide the H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow gg$$\end{document} decay rate at the order N5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^5$$\end{document}LO in the fixed-order ΓN5LO=Γ0(1.8375±0.047αs(MZ),1%±0.0004Mt±0.0066MH±0.0036P±0.007s±0.0005sc),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{\mathrm{N^5LO}} \,=\, \Gamma _0 (1.8375 \pm 0.047 _{\alpha _s(M_Z),1\%}\pm 0.0004_{M_t} \pm 0.0066_{M_H} \pm 0.0036_{\textrm{P}} \pm 0.007_{\text {s}} \pm 0.0005_{sc} ),$$\end{document} and ΓRGSN5LO=Γ0(1.841±0.047αs(MZ),1%±0.0005Mt±0.0066MH±0.0002μ±0.0027P±0.001sc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{\mathrm{RGSN^5LO}} \,=\, \Gamma _0 (1.841 \pm 0.047 _{\alpha _s(M_Z),1\%} \pm 0.0005_{M_t}\pm 0.0066_{M_H} \pm 0.0002_{\mu } \pm 0.0027_{\textrm{P}} \pm 0.001_{sc} )$$\end{document} in the renormalization-group summed perturbative theories.
引用
收藏
相关论文
共 50 条
  • [21] RENORMALIZATION-GROUP FIXED-POINTS AND THE HIGGS BOSON SPECTRUM
    HILL, CT
    LEUNG, CN
    RAO, S
    NUCLEAR PHYSICS B, 1985, 262 (03) : 517 - 537
  • [22] Renormalization group scaling of Higgs operators and h → γγ decay
    Grojean, Christophe
    Jenkins, Elizabeth E.
    Manohar, Aneesh V.
    Trott, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04):
  • [23] Renormalization group scaling of Higgs operators and h → γγ decay
    Christophe Grojean
    Elizabeth E. Jenkins
    Aneesh V. Manohar
    Michael Trott
    Journal of High Energy Physics, 2013
  • [24] The phase structure of lattice QCD with two flavors of Wilson quarks and renormalization group improved gluons
    F. Farchioni
    K. Jansen
    I. Montvay
    E. Scholz
    L. Scorzato
    A. Shindler
    N. Ukita
    C. Urbach
    I. Wetzorke
    The European Physical Journal C - Particles and Fields, 2005, 42 : 73 - 87
  • [25] The phase structure of lattice QCD with two flavors of Wilson quarks and renormalization group improved gluons
    Farchioni, F
    Jansen, K
    Montvay, I
    Scholz, E
    Scorzato, L
    Shindler, A
    Ukita, N
    Urbach, C
    Wetzorke, I
    EUROPEAN PHYSICAL JOURNAL C, 2005, 42 (01): : 73 - 87
  • [26] DLA with two species: Renormalization-group method
    Chang, Fuxuan
    Li, Houqiang
    Liu, De
    Lin, Libin
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (04): : 199 - 203
  • [27] RENORMALIZATION-GROUP ANALYSIS OF TAU-LEPTON DECAY IN QCD
    PIVOVAROV, AA
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1991, 54 (04): : 676 - 678
  • [28] RENORMALIZATION-GROUP ANALYSIS OF THE HIGGS SECTOR IN THE MINIMAL SUPERSYMMETRIC STANDARD MODEL
    SASAKI, K
    CARENA, M
    WAGNER, CEM
    NUCLEAR PHYSICS B, 1992, 381 (1-2) : 66 - 86
  • [29] LOWER-BOUND RENORMALIZATION-GROUP FOR GAUGE-HIGGS SYSTEMS
    CALLAWAY, DJE
    PHYSICAL REVIEW D, 1989, 39 (02): : 612 - 615
  • [30] IMPROVED MONTE-CARLO RENORMALIZATION-GROUP METHOD
    GUPTA, R
    WILSON, KG
    UMRIGAR, C
    JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (5-6) : 1095 - 1099