Dissipation enhancement by transport noise for stochastic p-Laplace equations

被引:0
|
作者
Zhao Dong
Dejun Luo
Bin Tang
机构
[1] Chinese Academy of Sciences,Key Laboratory of RCSDS, Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
-Laplace operator; Transport noise; Dissipation enhancement; Semigroup approach; Primary 60H15; Secondary 60H50;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic p-Laplace equation with multiplicative transport noise is studied on the torus Td(d≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^d\, (d\ge 2)$$\end{document}. It is shown that the dissipation is enhanced by transport noise in both the averaged sense and the pathwise sense.
引用
收藏
相关论文
共 50 条
  • [41] BMO SOLUTIONS TO QUASILINEAR EQUATIONS OF p-LAPLACE TYPE
    Nguyen Cong Phuc
    Verbitsky, Igor E.
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (05) : 1911 - 1939
  • [42] Infinitely Many Solutions to a Class of p-Laplace Equations
    Deng, Yi-Hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04): : 770 - 779
  • [43] CONCAVE SOLUTIONS TO FINSLER p-LAPLACE TYPE EQUATIONS
    Mosconi, Sunra
    Riey, Giuseppe
    Squassina, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (12) : 3669 - 3697
  • [44] Regularity of the extremal solution for singular p-Laplace equations
    Castorina, Daniele
    MANUSCRIPTA MATHEMATICA, 2015, 146 (3-4) : 519 - 529
  • [45] Solutions for a class of p-Laplace equations with potentials in RN
    Wu, Mingzhu
    Yang, Zuodong
    APPLICABLE ANALYSIS, 2009, 88 (12) : 1755 - 1762
  • [46] ANISOTROPIC p-LAPLACE EQUATIONS ON LONG CYLINDRICAL DOMAIN
    Jana, Purbita
    OPUSCULA MATHEMATICA, 2024, 44 (02) : 249 - 265
  • [47] Nodal solutions for p-Laplace equations with critical growth
    Deng, YB
    Guo, ZH
    Wang, GS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (06) : 1121 - 1151
  • [48] On Singular Sets of Local Solutions to p-Laplace Equations
    Hongwei LOU Key Laboratory of Mathematics for Nonlinear Sciences
    ChineseAnnalsofMathematics, 2008, (05) : 521 - 530
  • [49] Infinitely Many Solutions to a Class of p-Laplace Equations
    Yi-Hua Deng
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 770 - 779
  • [50] Equivalence of solutions to fractional p-Laplace type equations
    Korvenpaa, Janne
    Kuusi, Tuomo
    Lindgren, Erik
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 1 - 26