Dissipation enhancement by transport noise for stochastic p-Laplace equations

被引:0
|
作者
Zhao Dong
Dejun Luo
Bin Tang
机构
[1] Chinese Academy of Sciences,Key Laboratory of RCSDS, Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
-Laplace operator; Transport noise; Dissipation enhancement; Semigroup approach; Primary 60H15; Secondary 60H50;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic p-Laplace equation with multiplicative transport noise is studied on the torus Td(d≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^d\, (d\ge 2)$$\end{document}. It is shown that the dissipation is enhanced by transport noise in both the averaged sense and the pathwise sense.
引用
收藏
相关论文
共 50 条
  • [1] Dissipation enhancement by transport noise for stochastic p-Laplace equations
    Dong, Zhao
    Luo, Dejun
    Tang, Bin
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [2] On the stochastic p-Laplace equation
    Liu, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 737 - 751
  • [3] On Superlinear p-Laplace Equations
    Duong Minh Duc
    VIETNAM JOURNAL OF MATHEMATICS, 2018, 46 (03) : 507 - 516
  • [4] ERGODICITY AND LOCAL LIMITS FOR STOCHASTIC LOCAL AND NONLOCAL p-LAPLACE EQUATIONS
    Gess, Benjamin
    Tolle, Jonas M.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) : 4094 - 4125
  • [5] The stochastic p-Laplace equation on Rd
    Schmitz, Kerstin
    Zimmermann, Aleksandra
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (05) : 892 - 917
  • [6] p-Laplace equations in conformal geometry
    Huajie Liu
    Shiguang Ma
    Jie Qing
    Shuhui Zhong
    Science China(Mathematics), 2025, 68 (05) : 1137 - 1150
  • [7] Eigenvalue problems for P-Laplace equations
    Huanan Ligong Daxue Xuebao, 2 (49-53):
  • [8] p-Laplace equations in conformal geometry
    Liu, Huajie
    Ma, Shiguang
    Qing, Jie
    Zhong, Shuhui
    SCIENCE CHINA-MATHEMATICS, 2025, 68 (05) : 1137 - 1150
  • [9] p-Laplace equations with singular weights
    Perera, Kanishka
    Sim, Inbo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 : 167 - 176
  • [10] RENORMALIZED SOLUTIONS FOR STOCHASTIC p-LAPLACE EQUATIONS WITH L1-INITIAL DATA: THE CASE OF MULTIPLICATIVE NOISE
    Sapountzoglou, Niklas
    Zimmermann, Aleksandra
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (08) : 3979 - 4002